967 resultados para ALDOSTERONE BLOCKADE
Resumo:
BACKGROUND/AIMS: Thiazolidinediones (TZDs, like rosiglitazone (RGZ)) are peroxisome proliferator-activated receptor γ (PPARγ) agonists used to treat type 2 diabetes. Clinical limitations include TZD-induced fluid retention and body weight (BW) increase, which are inhibited by amiloride, an epithelial-sodium channel (ENaC) blocker. RGZ-induced fluid retention is maintained in mice with αENaC knockdown in the collecting duct (CD). Since ENaC in the connecting tubule (CNT) rather than in CD appears to be critical for normal NaCl retention, we aimed to further explore the role of ENaC in CNT in RGZ-induced fluid retention. METHODS: Mice with conditional inactivation of αENaC in both CNT and CD were used (αENaC lox/lox AQP2-Cre; 'αENaC-CNT/CD-KO') and compared with littermate controls (αENaC lox/lox mice; 'WT'). BW was monitored and total body water (TBW) and extracellular fluid volume (ECF) were determined by bioelectrical impedance spectroscopy (BIS) before and after RGZ (320 mg/kg diet for 10 days). RESULTS: On regular NaCl diet, αENaC-CNT/CD-KO had normal BW, TBW, ECF, hematocrit, and plasma Na(+), K(+), and creatinine, associated with an increase in plasma aldosterone compared with WT. Challenging αENaC-CNT/CD-KO with a low NaCl diet unmasked impaired NaCl and K homeostasis, consistent with effective knockdown of αENaC. In WT, RGZ increased BW (+6.1%), TBW (+8.4%) and ECF (+10%), consistent with fluid retention. These changes were significantly attenuated in αENaC-CNT/CD-KO (+3.4, 1.3, and 4.3%). CONCLUSION: Together with the previous studies, the current results are consistent with a role of αENaC in CNT in RGZ-induced fluid retention, which dovetails with the physiological relevance of ENaC in this segment. © 2014 S. Karger AG, Basel.
Resumo:
BACKGROUND: After peripheral nerve injury, spontaneous ectopic activity arising from the peripheral axons plays an important role in inducing central sensitization and neuropathic pain. Recent evidence indicates that activation of spinal cord microglia also contributes to the development of neuropathic pain. In particular, activation of p38 mitogen-activated protein kinase (MAPK) in spinal microglia is required for the development of mechanical allodynia. However, activity-dependent activation of microglia after nerve injury has not been fully addressed. To determine whether spontaneous activity from C- or A-fibers is required for microglial activation, we used resiniferatoxin (RTX) to block the conduction of transient receptor potential vanilloid subtype 1 (TRPV1) positive fibers (mostly C- and Adelta-fibers) and bupivacaine microspheres to block all fibers of the sciatic nerve in rats before spared nerve injury (SNI), and observed spinal microglial changes 2 days later. RESULTS: SNI induced robust mechanical allodynia and p38 activation in spinal microglia. SNI also induced marked cell proliferation in the spinal cord, and all the proliferating cells (BrdU+) were microglia (Iba1+). Bupivacaine induced a complete sensory and motor blockade and also significantly inhibited p38 activation and microglial proliferation in the spinal cord. In contrast, and although it produced an efficient nociceptive block, RTX failed to inhibit p38 activation and microglial proliferation in the spinal cord. CONCLUSION: (1) Blocking peripheral input in TRPV1-positive fibers (presumably C-fibers) is not enough to prevent nerve injury-induced spinal microglial activation. (2) Peripheral input from large myelinated fibers is important for microglial activation. (3) Microglial activation is associated with mechanical allodynia.
Resumo:
TERMINOLOGY AND PRINCIPLES OF COMBINING ANTIPSYCHOTICS WITH A SECOND MEDICATION: The term "combination" includes virtually all the ways in which one medication may be added to another. The other commonly used terms are "augmentation" which implies an additive effect from adding a second medicine to that obtained from prescribing a first, an "add on" which implies adding on to existing, possibly effective treatment which, for one reason or another, cannot or should not be stopped. The issues that arise in all potential indications are: a) how long it is reasonable to wait to prove insufficiency of response to monotherapy; b) by what criteria that response should be defined; c) how optimal is the dose of the first monotherapy and, therefore, how confident can one be that its lack of effect is due to a truly inadequate response? Before one considers combination treatment, one or more of the following criteria should be met; a) monotherapy has been only partially effective on core symptoms; b) monotherapy has been effective on some concurrent symptoms but not others, for which a further medicine is believed to be required; c) a particular combination might be indicated de novo in some indications; d) The combination could improve tolerability because two compounds may be employed below their individual dose thresholds for side effects. Regulators have been concerned primarily with a and, in principle at least, c above. In clinical practice, the use of combination treatment reflects the often unsatisfactory outcome of treatment with single agents. ANTIPSYCHOTICS IN MANIA: There is good evidence that most antipsychotics tested show efficacy in acute mania when added to lithium or valproate for patients showing no or a partial response to lithium or valproate alone. Conventional 2-armed trial designs could benefit from a third antipsychotic monotherapy arm. In the long term treatment of bipolar disorder, in patients responding acutely to the addition of quetiapine to lithium or valproate, this combination reduces the subsequent risk of relapse to depression, mania or mixed states compared to monotherapy with lithium or valproate. Comparable data is not available for combination with other antipsychotics. ANTIPSYCHOTICS IN MAJOR DEPRESSION: Some atypical antipsychotics have been shown to induce remission when added to an antidepressant (usually a SSRI or SNRI) in unipolar patients in a major depressive episode unresponsive to the antidepressant monotherapy. Refractoriness is defined as at least 6 weeks without meeting an adequate pre-defined treatment response. Long term data is not yet available to support continuing efficacy. SCHIZOPHRENIA: There is only limited evidence to support the combination of two or more antipsychotics in schizophrenia. Any monotherapy should be given at the maximal tolerated dose and at least two antipsychotics of different action/tolerability and clozapine should be given as a monotherapy before a combination is considered. The addition of a high potency D2/3 antagonist to a low potency antagonist like clozapine or quetiapine is the logical combination to treat positive symptoms, although further evidence from well conducted clinical trials is needed. Other mechanisms of action than D2/3 blockade, and hence other combinations might be more relevant for negative, cognitive or affective symptoms. OBSESSIVE-COMPULSIVE DISORDER: SSRI monotherapy has moderate overall average benefit in OCD and can take as long as 3 months for benefit to be decided. Antipsychotic addition may be considered in OCD with tic disorder and in refractory OCD. For OCD with poor insight (OCD with "psychotic features"), treatment of choice should be medium to high dose of SSRI, and only in refractory cases, augmentation with antipsychotics might be considered. Augmentation with haloperidol and risperidone was found to be effective (symptom reduction of more than 35%) for patients with tics. For refractory OCD, there is data suggesting a specific role for haloperidol and risperidone as well, and some data with regard to potential therapeutic benefit with olanzapine and quetiapine. ANTIPSYCHOTICS AND ADVERSE EFFECTS IN SEVERE MENTAL ILLNESS: Cardio-metabolic risk in patients with severe mental illness and especially when treated with antipsychotic agents are now much better recognized and efforts to ensure improved physical health screening and prevention are becoming established.
Resumo:
The inflammasome is a proteolytic complex that regulates IL1β and IL-18 secretion in macrophages and dendritic cells. Its plays a vital role in the control of the inflammatory and cellular responses to infectious and danger signals and is an essential part of the innate immune system. Four different inflammasomes have been identified so far, and the NLRP3-inflammasome has been the best-studied in relation to human disease. Activation of the NLRP3-inflammasome by microcrystals, such as monosodium urate (MSU) and basic calcium phosphate (BCP) crystals, leads to IL1β release, which in turn triggers local inflammation. Dysfunction of the NLRP3-inflammasome due to mutations of the NLRP3 gene is the cause of the auto-inflammatory syndrome CAPS. The symptoms and signs of inflammation in both conditions respond to IL1 blockade. IL1 inhibitors have also been used successfully in other idiopathic inflammatory diseases, suggesting that dysregulated inflammasome activity contributes to the pathogenesis of multiple diseases, but the precise underlying mechanisms remain to be identified.
Resumo:
Cyclin dependent kinases (cdks) regulate cell cycle progression and transcription. We report here that the transcriptional co-activator PCAF directly interacts with cdk2. This interaction is mainly produced during S and G2/M phases of the cell cycle. As a consequence of this association, PCAF inhibits the activity of cyclin/cdk2 complexes. This effect is specific for cdk2 because PCAF does not inhibit either cyclin D3/cdk6 or cyclin B/cdk1 activities. The inhibition is neither competitive with ATP, nor with the substrate histone H1 suggesting that somehow PCAF disturbs cyclin/cdk2 complexes. We also demonstrate that overexpression of PCAF in the cells inhibits cdk2 activity and arrests cell cycle progression at S and G2/M. This blockade is dependent on cdk2 because it is rescued by the simultaneous overexpression of this kinase. Moreover, we also observed that PCAF acetylates cdk2 at lysine 33. As this lysine is essential for the interaction with ATP, acetylation of this residue inhibits cdk2 activity. Thus, we report here that PCAF inhibits cyclin/cdk2 activity by two different mechanisms: (i) by somehow affecting cyclin/cdk2 interaction and (ii) by acetylating K33 at the catalytic pocket of cdk2. These findings identify a previously unknown mechanism that regulates cdk2 activity.
Resumo:
In order to prevent allograft rejection, most current immunosuppressive drugs nonspecifically target T-cell activation, clonal expansion or differentiation into effector cells. Experimental models have shown that it is possible to exploit the central and peripheral mechanisms that normally maintain immune homeostasis and tolerance to self-antigens, in order to induce tolerance to alloantigens. Central tolerance results from intrathymic deletion of T cells with high avidity for thymically expressed antigens. Peripheral tolerance to nonself-molecules can be achieved by various mechanisms including deletion of activated/effector T cells, anergy induction and active regulation of effector T cells. In this article, we briefly discuss the pathways of allorecognition and their relevance to current immunosuppressive strategies and to the induction of transplantation tolerance (through haematopoietic mixed chimerism, depleting protocols, costimulatory blockade and regulatory T cells). We then review the prospect of clinical applicability of these protocols in solid organ transplantation.
Resumo:
PURPOSE: Plasmid electrotransfer in the ciliary muscle allows the sustained release of therapeutic proteins within the eye. The aim of this study was to evaluate whether the ocular production of TNF-alpha soluble receptor, using this nonviral gene therapy method, could have a beneficial local effect in a model of experimental autoimmune uveoretinitis (EAU). METHODS: Injection of a plasmid encoding a TNF-alpha p55 receptor (30 microg) in the ciliary muscle, combined with electrotransfer (200 V/cm), was carried out in Lewis rat eyes 4 days before the induction of EAU by S-antigen. Control eyes received naked plasmid electrotransfer or simple injection of the therapeutic plasmid. The disease was evaluated clinically and histologically. Cytokines and chemokines were analyzed in the ocular media by multiplex assay performed 15 and 21 days after immunization. RESULTS: Ocular TNF-alpha blockade, resulting from the local secretion of soluble receptors, was associated with delayed and significantly less severe uveitis, together with a reduction of the retinal damages. Compared with the controls, treated eyes showed significantly lower levels of IL-1beta and MCP1, higher levels of IL-13 and IL-4, and reduced NOS-2 expression in infiltrating cells. Treatment did not influence TNF-alpha levels in inguinal lymph nodes. CONCLUSIONS: Taken together, these results indicate that local immunomodulation was achieved and that no systemic adverse effects of TNF-alpha blockade observed after systemic injection of TNF-alpha inhibitors should be expected.
Resumo:
Background and aims: The extent and molecular mechanisms governing plasma extravasation and formation of ascites in cirrhosis are unknown. Vascular endothelial growth factor-A (VEGF-A) and angiopoietin-2 (Ang-2) are endogenous substances with powerful vascular permeability effects. We assessed regional blood flow, vascular leakage, mRNA and tissular expression of VEGF-A and Ang-2 and vascular permeability following VEGF receptor 2 blockade in control and cirrhotic rats to define the vascular territories showing altered vascular permeability in cirrhosis and to determine whether VEGF-A and Ang-2 are involved in this phenomenon. Methods: Arterial blood flow was analysed with the coloured microsphere method. Vascular leakage was measured and visualised with the dye Evan¿s Blue and colloidal carbon techniques, respectively. VEGF-A and Ang-2 expression were determined by real-time polymerase chain reaction (RT-PCR), immunohistochemistry and western blot. The effect on vascular permeability induced by VEGFR2 blockade was assessed by administration of the receptor inhibitor SU11248. Results: Arterial blood flow was increased in the mesentery, pancreas and small intestine but not in the kidney and spleen of cirrhotic rats as compared to controls. Increased vascular leakage was observed in the mesentery and liver, where colloidal carbon spread from microvessels to the adjacent fibrotic tracts. Increased hepatic and mesenteric expression of VEGF-A and Ang-2 was found in cirrhotic rats as compared to controls. Blockade of VEGFR2 markedly reduced hepatic and mesenteric vascular leakage in cirrhotic rats. Conclusions: Enhanced endothelial permeability is restricted to the hepatic and mesenteric vascular beds in cirrhotic rats with ascites and VEGF-A and Ang-2 are key factors in the signalling pathways regulating this dysfunction.
Resumo:
Glibenclamide is neuroprotective against cerebral ischemia in rats. We studied whether glibenclamide enhances long-term brain repair and improves behavioral recovery after stroke. Adult male Wistar rats were subjected to transient middle cerebral artery occlusion (MCAO) for 90 minutes. A low dose of glibenclamide (total 0.6mg) was administered intravenously 6, 12, and 24 hours after reperfusion. We assessed behavioral outcome during a 30-day follow-up and animals were perfused for histological evaluation. In vitro specific binding of glibenclamide to microglia increased after pro-inflammatory stimuli. In vivo glibenclamide was associated with increased migration of doublecortin-positive cells in the striatum toward the ischemic lesion 72 hours after MCAO, and reactive microglia expressed sulfonylurea receptor 1 (SUR1) and Kir6.2 in the medial striatum. One month after MCAO, glibenclamide was also associated with increased number of NeuN-positive and 5-bromo-2-deoxyuridine-positive neurons in the cortex and hippocampus, and enhanced angiogenesis in the hippocampus. Consequently, glibenclamide-treated MCAO rats showed improved performance in the limb-placing test on postoperative days 22 to 29, and in the cylinder and water-maze test on postoperative day 29. Therefore, acute blockade of SUR1 by glibenclamide enhanced long-term brain repair in MCAO rats, which was associated with improved behavioral outcome.
Resumo:
Atrial natriuretic peptides (ANP) are released into the circulation in response to enhanced atrial stretching. These peptides not only have diuretic and natriuretic properties, but also exert a relaxing effect on the vasculature. Moreover, they antagonize the contractions induced by norepinephrine and angiotensin II. Neuropeptide Y (NPY) is also a vasoactive peptide. It is widely distributed throughout the central and peripheral nervous systems. NPY is coreleased with norepinephrine by perivascular nerve endings. At high concentrations, this peptide has a direct vasoconstrictor effect. In addition, it enhances the vascular effect of various agonists, including norepinephrine and angiotensin II. Both ANP and NPY have an inhibitory effect on renin secretion. This effect may have important implications for the role of these peptides in cardiovascular regulation.
Resumo:
Fragile X syndrome (FXS) is an X-linked condition associated with intellectual disability and behavioral problems. It is caused by expansion of a CGG repeat in the 5' untranslated region of the fragile X mental retardation 1 (FMR1) gene. This mutation is associated with hypermethylation at the FMR1 promoter and resultant transcriptional silencing. FMR1 silencing has many consequences, including up-regulation of metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. mGluR5 receptor antagonists have shown promise in preclinical FXS models and in one small open-label study of FXS. We examined whether a receptor subtype-selective inhibitor of mGluR5, AFQ056, improves the behavioral symptoms of FXS in a randomized, double-blind, two-treatment, two-period, crossover study of 30 male FXS patients aged 18 to 35 years. We detected no significant effects of treatment on the primary outcome measure, the Aberrant Behavior Checklist-Community Edition (ABC-C) score, at day 19 or 20 of treatment. In an exploratory analysis, however, seven patients with full FMR1 promoter methylation and no detectable FMR1 messenger RNA improved, as measured with the ABC-C, significantly more after AFQ056 treatment than with placebo (P < 0.001). We detected no response in 18 patients with partial promoter methylation. Twenty-four patients experienced an adverse event, which was mostly mild to moderately severe fatigue or headache. If confirmed in larger and longer-term studies, these results suggest that blockade of the mGluR5 receptor in patients with full methylation at the FMR1 promoter may show improvement in the behavioral attributes of FXS.
Resumo:
The paradoxical coexistence of spontaneous tumor antigen-specific immune responses with progressive disease in cancer patients furthers the need to dissect the molecular pathways involved in tumor-induced T cell dysfunction. In patients with advanced melanoma, we have previously shown that the cancer-germline antigen NY-ESO-1 stimulates spontaneous NY-ESO-1-specific CD8(+) T cells that up-regulate PD-1 expression. We also observed that PD-1 regulates NY-ESO-1-specific CD8(+) T cell expansion upon chronic antigen stimulation. In the present study, we show that a fraction of PD-1(+) NY-ESO-1-specific CD8(+) T cells in patients with advanced melanoma up-regulates Tim-3 expression and that Tim-3(+)PD-1(+) NY-ESO-1-specific CD8(+) T cells are more dysfunctional than Tim-3(-)PD-1(+) and Tim-3(-)PD-1(-) NY-ESO-1-specific CD8(+) T cells, producing less IFN-γ, TNF, and IL-2. Tim-3-Tim-3L blockade enhanced cytokine production by NY-ESO-1-specific CD8(+) T cells upon short ex vivo stimulation with cognate peptide, thus enhancing their functional capacity. In addition, Tim-3-Tim-3L blockade enhanced cytokine production and proliferation of NY-ESO-1-specific CD8(+) T cells upon prolonged antigen stimulation and acted in synergy with PD-1-PD-L1 blockade. Collectively, our findings support the use of Tim-3-Tim-3L blockade together with PD-1-PD-L1 blockade to reverse tumor-induced T cell exhaustion/dysfunction in patients with advanced melanoma.
Resumo:
The development of cancer is a major problem in immunosuppressed patients, particularly after solid organ transplantation. We have recently shown that calcineurin inhibitors (CNI) used to treat transplant patients may play a critical role in the rapid progression of renal cancer. To examine the intracellular signaling events for CNI-mediated direct tumorigenic pathway(s), we studied the effect of CNI on the activation of proto-oncogenic Ras in human normal renal epithelial cells (REC) and renal cancer cells (786-0 and Caki-1). We found that CNI treatment significantly increased the level of activated GTP-bound form of Ras in these cells. In addition, CNI induced the association of Ras with one of its effector molecules, Raf, but not with Rho and phosphatidylinositol 3-kinase; CNI treatment also promoted the phosphorylation of the Raf kinase inhibitory protein and the downregulation of carabin, all of which may lead to the activation of the Ras-Raf pathway. Blockade of this pathway through either pharmacologic inhibitors or gene-specific small interfering RNA significantly inhibited CNI-mediated augmented proliferation of renal cancer cells. Finally, it was observed that CNI treatment increased the growth of human renal tumors in vivo, and the Ras-Raf pathway is significantly activated in the tumor tissues of CNI-treated mice. Together, targeting the Ras-Raf pathway may prevent the development/progression of renal cancer in CNI-treated patients.
Resumo:
Common variable immunodeficiency (CVID), is a disease that is characterized by hypogammaglobulinemia as well as a defect in T, B and dendritic cells. This leads to recurrent bacterial infection mainly caused by Streptococcus pneumoniae, Klebsiella pneumoniae and Haemophilus influenzae, as well as inflammatory manifestations, i.e. granulomateous disease, gastro-intestinal disorders and chronic lung disease. Intravenous Immunoglobulin (IVIg) therapy reduces CVID susceptibility to bacterial infections to some extend. We analyzed clinical aspects of patients from our database. We recently showed that bacteria-specific CD4 T cells of CVID patients were impaired. We therefor postulated that CVID patients may harbor an acquired T-cell deficiency also called exhaustion. To test this hypothesis, we performed a comprehensive investigation of the functional profiles of bacteria-specific CD4 T cells isolated from 31 healthy individuals and 30 CVID patients. In the present study, we demonstrated that bacteria-specific but not virus-specific CD4 T cells in CVID patients harbored reduced proliferation capacity and expressed high level of PD-1. Interestingly, the blockade of PD-1/PD-1 ligands interactions restored partially bacteria but not virus-specific CD4 T-cell proliferation. Finally, we showed that 1) the level of endotoxins inversely correlates with IgG concentration, 2) IVIG treated CVID patients harbored reduced endotoxemia and 3) IgG concentration exceeding 7 mg/mL strongly reduces both the proportion of CVID patients with detectable endotoxemia and the concentration of endotoxins in plasma. Taken together our observations, suggest that primary B-cell defect(s) in CVID patients leads to recurrent bacterial infections that are associated to an acquired (secondary) impairment of CD4 T cells which may in turn exacerbate the lack of protection against extracellular bacteria.
Resumo:
Menopause and premature gonadal steroid deficiency are associated with increases in fat mass and body weight. Ovariectomized (OVX) mice also show reduced locomotor activity. Glucose-dependent-insulinotropic-polypeptide (GIP) is known to play an important role both in fat metabolism and locomotor activity. Therefore, we hypothesized that the effects of estrogen on the regulation of body weight, fat mass, and spontaneous physical activity could be mediated in part by GIP signaling. To test this hypothesis, C57BL/6 mice and GIP-receptor knockout mice (Gipr(-/-)) were exposed to OVX or sham operation (n = 10 per group). The effects on body composition, markers of insulin resistance, energy expenditure, locomotor activity, and expression of hypothalamic anorexigenic and orexigenic factors were investigated over 26 wk in all four groups of mice. OVX wild-type mice developed obesity, increased fat mass, and elevated markers of insulin resistance as expected. This was completely prevented in OVX Gipr(-/-) animals, even though their energy expenditure and spontaneous locomotor activity levels did not significantly differ from those of OVX wild-type mice. Cumulative food intake in OVX Gipr(-/-) animals was significantly reduced and associated with significantly lower hypothalamic mRNA expression of the orexigenic neuropeptide Y (NPY) but not of cocaine-amphetamine-related transcript (CART), melanocortin receptors (MCR-3 and MCR-4), or thyrotropin-releasing hormone (TRH). GIP receptors thus interact with estrogens in the hypothalamic regulation of food intake in mice, and their blockade may carry promising potential for the prevention of obesity in gonadal steroid deficiency.