981 resultados para 6,9,12,15-Hexadecatetraenoic acid
Resumo:
Purpose: Adhesive cementation is an important step for restorations made of feldspathic ceramic as it increases the strength of such materials. Incorrect selection of the adhesive resin and the resin cement to adhere to the ceramic surface and their durability against aging can affect the adhesion between these materials and the clinical performance. This study evaluated the effect of adhesive resins with different pHs, resin cements with different polymerization modes, and aging on the bond strength to feldspathic ceramic. Materials and Methods: One surface of feldspathic ceramic blocks (VM7) (N = 90) (6.4 × 6.4 × 4.8 mm3) was conditioned with 10% hydrofluoric acid for 20 seconds, washed/dried, and silanized. Three adhesive resins (Scotchbond Multi-Purpose Plus [SBMP], pH: 5.6; Single Bond [SB], pH: 3.4; and Prime&Bond NT [NT], pH: 1.7) were applied on the ceramic surfaces (n = 30 per adhesive). For each adhesive group, three resin cements with different polymerization modes were applied (n = 10 per cement): photo-polymerized (Variolink II base), dual polymerized (Variolink II base + catalyst), and chemically polymerized (C&B). The bonded ceramic blocks were stored in water (37°C) for 24 hours and sectioned to produce beam specimens (cross-sectional bonded area: 1 ± 0.1 mm2). The beams of each block were randomly divided into two conditions: Dry, microtensile test immediately after cutting; TC, test was performed after thermocycling (12,000×, 5°C to 55°C) and water storage at 37°C for 150 days. Considering the three factors of the study (adhesive [3 levels], resin cement [3 levels], aging [2 levels]), 18 groups were studied. The microtensile bond strength data were analyzed using 3-way ANOVA and Tukey's post hoc test (α= 0.05). Results: Adhesive resin type (p < 0.001) and the resin cement affected the mean bond strength (p= 0.0003) (3-way ANOVA). The NT adhesive associated with the chemically polymerized resin cement in both dry (8.8 ± 6.8 MPa) and aged conditions (6.9 ± 5.9 MPa) presented statistically lower bond strength results, while the SBMP adhesive resin, regardless of the resin cement type, presented the highest results (15.4 to 18.5 and 14.3 to 18.9 MPa) in both dry and aged conditions, respectively (Tukey's test). Conclusion: Application of a low-pH adhesive resin onto a hydrofluoric acid etched and silanized feldspathic ceramic surface in combination with chemically polymerized resin cement did not deliver favorable results. The use of adhesive resin with high pH could be clinically advised for the photo-, dual-, and chemically polymerized resin cements tested. © 2012 by the American College of Prosthodontists.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform–near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases’ ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level.
Resumo:
The aims of this study were to determine the effects of pH and acid concentration on the dissolution of enamel, dentine, and compressed hydroxyapatite (HA) in citric acid solutions (15.6 and 52.1 mmol l(-1) ; pH 2.45, 3.2, and 3.9), using a pH-stat system. After an initial adjustment period, the dissolution rates of enamel and HA were constant, while that of dentine decreased with time. The dissolution rate increased as the pH decreased, and this was most marked for enamel. To compare substrates, the rate of mineral dissolution was normalized to the area occupied by mineral at the specimen surface. For a given acid concentration, the normalized dissolution rate of HA was always less than that for either dentine or enamel. The dissolution rate for dentine mineral was similar to that for enamel at pH 2.45 and greater at pH 3.2 and pH 3.9. The concentration of acid significantly affected the enamel dissolution rate at pH 2.45 and pH 3.2, but not at pH 3.9, and did not significantly affect the dissolution rates of dentine or HA at any pH. The variation in response of the dissolution rate to acid concentration/buffer capacity with respect to pH and tissue type might complicate attempts to predict erosive potential from solution composition.
Resumo:
Hyperkalemia is a common life-threatening problem in hemodialysis patients. Because glycyrrhetinic acid (GA) inhibits the enzyme 11beta-hydroxy-steroid dehydrogenase II and thereby increases cortisol availability to the colonic mineralocorticoid receptor, it has the potential to lower serum potassium concentrations. To test this, 10 patients in a 6 month prospective, double-blind, placebo-controlled crossover study were given cookies or bread rolls supplemented with glycyrrhetinic acid or placebo. Twenty-four-hour blood pressure measurements were performed at baseline and week 6 and 12 of each treatment period. The ratio of plasma cortisol/cortisone was significantly increased in all patients on GA as compared to baseline or placebo, indicating appropriate enzyme inhibition. Nine of the 10 patients had a persistent decrease in predialysis serum potassium concentration. On GA, mean predialysis serum potassium was significantly lower than at baseline or on placebo. On placebo, serum potassium was significantly elevated above the upper limit of normal in 76% compared to 30% of measurements during GA treatment. Furthermore, on this treatment the frequency of severe hyperkalemia significantly decreased from 9% to 0.6%. No differences were found in parameters reflecting sodium retention. Although these studies show that prolonged GA supplementation persistently lowers serum potassium in dialysis patients, a long-term toxicity study will be mandatory before we recommend the routine use of this treatment.
Resumo:
Trans-10,cis-12 conjugated linoleic acid (CLA) supplementation causes milk fat depression in dairy cows, but CLA effects on glucose metabolism are not clear. The objective of the study was to investigate glucose metabolism, especially endogenous glucose production (eGP) and glucose oxidation (GOx), as well as hepatic genes involved in endogenous glucose production in Holstein cows supplemented either with 50 g of rumen-protected CLA (9% trans-10,cis-12 and 10% cis-9,trans-11; CLA; n=10) or 50 g of control fat (24% C18:2; Ctrl; n=10) from wk 2 before parturition to wk 9 of lactation. Animal performance data were recorded and blood metabolites and hormones were taken weekly from 2 wk before to 12 wk after parturition. During wk 3 and 9 after parturition, glucose tolerance tests were performed and eGP and GOx were measured by [U-(13)C] glucose infusion. Liver biopsies were taken at the same time to measure total fat and glycogen concentrations and gene expression of pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and carnitine palmitoyl-transferase 1. Conjugated linoleic acid feeding reduced milk fat, but increased milk lactose output; milk yield was higher starting 5 wk after parturition in CLA-fed cows than in Ctrl-fed cows. Energy balance was more negative during CLA supplementation, and plasma concentrations of glucose were higher immediately after calving in CLA-fed cows. Conjugated linoleic acid supplementation did not affect insulin release during glucose tolerance tests, but reduced eGP in wk 3, and eGP and GOx increased with time after parturition. Hepatic gene expression of cytosolic phosphoenolpyruvate carboxykinase tended to be lower in CLA-fed cows than in Ctrl-fed cows. In spite of lower eGP in CLA-fed cows, lactose output and plasma glucose concentrations were greater in CLA-fed cows than in Ctrl-fed cows. This suggests a CLA-related glucose sparing effect most likely due to lower glucose utilization for milk fat synthesis and probably because of a more efficient whole-body energy utilization in CLA-fed cows.
Resumo:
Membrane fatty acids were extracted from a sediment core above marine gas hydrates at Hydrate Ridge, NE Pacific. Anaerobic sediments from this environment are characterized by high sulfate reduction rates driven by the anaerobic oxidation of methane (AOM). The assimilation of methane carbon into bacterial biomass is indicated by carbon isotope values of specific fatty acids as low as -103 per mill. Specific fatty acids released from bacterial membranes include C 16:1 omega 5c , C 17:1 omega 6c , and cyC 17:0 omega 5,6 , all of which have been fully characterized by mass spectrometry. These unusual fatty acids continuously display the lowest d13 C values in all sediment horizons and two of them are detected in high abundance (i.e., C 16:1 omega 5c and cyC 17:0 omega 5,6 ). Combined with microscopic examination by fluorescence in situ hybridization specifically targeting sulfate-reducing bacteria (SRB) of the Desulfosarcina/Desulfococcus group, which are present in the aggregates of AOM consortia in extremely high numbers, these specific fatty acids appear to provide a phenotypic fingerprint indicative for SRB of this group. Correlating depth profiles of specific fatty acid content and aggregate number in combination with pore water sulfate data provide further evidence of this finding. Using mass balance calculations we present a cell-specific fatty acid pattern most likely displaying a very close resemblance to the still uncultured Desulfosarcina/Desulfococcus species involved in AOM.