995 resultados para 551


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simulations of precipitating convection are used to illustrate the importance of the turbulent kinetic energy (TKE) budget in determining the virtual potential-temperature structure of the convecting atmosphere. Two sets of simulations are presented: in one the surface temperature was increased to simulate cold air flowing over a warmer surface and in the second a cooling profile, representing cold-air advection, was imposed. It is shown that the terms in the TKE budgets for both sets of simulations scale in the same way, but that the non-dimensional profiles are different. It is suggested that this is associated with the effects of sublimation of ice. It is shown that the magnitudes of the transport and precipitation terms in the virtual potential temperature budget are determined by the scaling of the TKE budget. Some implications of these results for parametrizations of moist convection are discussed. Copyright © 2007 Royal Meteorological Society

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transport of stratospheric air deep into the troposphere via convection is investigated numerically using the UK Met Office Unified Model. A convective system that formed on 27 June 2004 near southeast England, in the vicinity an upper level potential vorticity anomaly and a lowered tropopause, provides the basis for analysis. Transport is diagnosed using a stratospheric tracer that can either be passed through or withheld from the model’s convective parameterization scheme. Three simulations are performed at increasingly finer resolutions, with horizontal grid lengths of 12, 4, and 1 km. In the 12 and 4 km simulations, tracer is transported deeply into the troposphere by the parameterized convection. In the 1 km simulation, for which the convective parameterization is disengaged, deep transport is still accomplished but with a much smaller magnitude. However, the 1 km simulation resolves stirring along the tropopause that does not exist in the coarser simulations. In all three simulations, the concentration of the deeply transported tracer is small, three orders of magnitude less than that of the shallow transport near the tropopause, most likely because of the efficient dilution of parcels in the lower troposphere.