840 resultados para 3D object recogntion
Resumo:
In the absence of cues for absolute depth measurements as binocular disparity, motion, or defocus, the absolute distance between the observer and a scene cannot be measured. The interpretation of shading, edges and junctions may provide a 3D model of the scene but it will not inform about the actual "size" of the space. One possible source of information for absolute depth estimation is the image size of known objects. However, this is computationally complex due to the difficulty of the object recognition process. Here we propose a source of information for absolute depth estimation that does not rely on specific objects: we introduce a procedure for absolute depth estimation based on the recognition of the whole scene. The shape of the space of the scene and the structures present in the scene are strongly related to the scale of observation. We demonstrate that, by recognizing the properties of the structures present in the image, we can infer the scale of the scene, and therefore its absolute mean depth. We illustrate the interest in computing the mean depth of the scene with application to scene recognition and object detection.
Resumo:
Tsunoda et al. (2001) recently studied the nature of object representation in monkey inferotemporal cortex using a combination of optical imaging and extracellular recordings. In particular, they examined IT neuron responses to complex natural objects and "simplified" versions thereof. In that study, in 42% of the cases, optical imaging revealed a decrease in the number of activation patches in IT as stimuli were "simplified". However, in 58% of the cases, "simplification" of the stimuli actually led to the appearance of additional activation patches in IT. Based on these results, the authors propose a scheme in which an object is represented by combinations of active and inactive columns coding for individual features. We examine the patterns of activation caused by the same stimuli as used by Tsunoda et al. in our model of object recognition in cortex (Riesenhuber 99). We find that object-tuned units can show a pattern of appearance and disappearance of features identical to the experiment. Thus, the data of Tsunoda et al. appear to be in quantitative agreement with a simple object-based representation in which an object's identity is coded by its similarities to reference objects. Moreover, the agreement of simulations and experiment suggests that the simplification procedure used by Tsunoda (2001) is not necessarily an accurate method to determine neuronal tuning.
Resumo:
Numerous psychophysical experiments have shown an important role for attentional modulations in vision. Behaviorally, allocation of attention can improve performance in object detection and recognition tasks. At the neural level, attention increases firing rates of neurons in visual cortex whose preferred stimulus is currently attended to. However, it is not yet known how these two phenomena are linked, i.e., how the visual system could be "tuned" in a task-dependent fashion to improve task performance. To answer this question, we performed simulations with the HMAX model of object recognition in cortex [45]. We modulated firing rates of model neurons in accordance with experimental results about effects of feature-based attention on single neurons and measured changes in the model's performance in a variety of object recognition tasks. It turned out that recognition performance could only be improved under very limited circumstances and that attentional influences on the process of object recognition per se tend to display a lack of specificity or raise false alarm rates. These observations lead us to postulate a new role for the observed attention-related neural response modulations.
Resumo:
Local descriptors are increasingly used for the task of object recognition because of their perceived robustness with respect to occlusions and to global geometrical deformations. Such a descriptor--based on a set of oriented Gaussian derivative filters-- is used in our recognition system. We report here an evaluation of several techniques for orientation estimation to achieve rotation invariance of the descriptor. We also describe feature selection based on a single training image. Virtual images are generated by rotating and rescaling the image and robust features are selected. The results confirm robust performance in cluttered scenes, in the presence of partial occlusions, and when the object is embedded in different backgrounds.
Resumo:
Traditionally, we've focussed on the question of how to make a system easy to code the first time, or perhaps on how to ease the system's continued evolution. But if we look at life cycle costs, then we must conclude that the important question is how to make a system easy to operate. To do this we need to make it easy for the operators to see what's going on and to then manipulate the system so that it does what it is supposed to. This is a radically different criterion for success. What makes a computer system visible and controllable? This is a difficult question, but it's clear that today's modern operating systems with nearly 50 million source lines of code are neither. Strikingly, the MIT Lisp Machine and its commercial successors provided almost the same functionality as today's mainstream sytsems, but with only 1 Million lines of code. This paper is a retrospective examination of the features of the Lisp Machine hardware and software system. Our key claim is that by building the Object Abstraction into the lowest tiers of the system, great synergy and clarity were obtained. It is our hope that this is a lesson that can impact tomorrow's designs. We also speculate on how the spirit of the Lisp Machine could be extended to include a comprehensive access control model and how new layers of abstraction could further enrich this model.
Resumo:
This report explores methods for determining the pose of a grasped object using only limited sensor information. The problem of pose determination is to find the position of an object relative to the hand. The information is useful when grasped objects are being manipulated. The problem is hard because of the large space of grasp configurations and the large amount of uncertainty inherent in dexterous hand control. By studying limited sensing approaches, the problem's inherent constraints can be better understood. This understanding helps to show how additional sensor data can be used to make recognition methods more effective and robust.
Resumo:
In this paper we present a component based person detection system that is capable of detecting frontal, rear and near side views of people, and partially occluded persons in cluttered scenes. The framework that is described here for people is easily applied to other objects as well. The motivation for developing a component based approach is two fold: first, to enhance the performance of person detection systems on frontal and rear views of people and second, to develop a framework that directly addresses the problem of detecting people who are partially occluded or whose body parts blend in with the background. The data classification is handled by several support vector machine classifiers arranged in two layers. This architecture is known as Adaptive Combination of Classifiers (ACC). The system performs very well and is capable of detecting people even when all components of a person are not found. The performance of the system is significantly better than a full body person detector designed along similar lines. This suggests that the improved performance is due to the components based approach and the ACC data classification structure.
Resumo:
We present a type-based approach to statically derive symbolic closed-form formulae that characterize the bounds of heap memory usages of programs written in object-oriented languages. Given a program with size and alias annotations, our inference system will compute the amount of memory required by the methods to execute successfully as well as the amount of memory released when methods return. The obtained analysis results are useful for networked devices with limited computational resources as well as embedded software.
Resumo:
Marc Bigas ha guanyat el premi Eduard Fonseré de ciències físiques de l'Institut d'Estudis Catalans amb la tesi Integració 3D de píxels híbrids. Bigas és, a més, responsable de desenvolupament del Parc Científic i Tecnològic de la UdG
Resumo:
Aquest projecte s'ha dut a terme amb el Grup de visió per computador del departament d'Arquitectura i Tecnologia de Computadors (ATC) de la Universitat de Girona. Està enfocat a l'anàlisi d'imatges mèdiques, en concret s'analitzaran imatges de pròstata en relació a desenvolupaments que s'estan realitzant en el grup de visió esmentat. Els objectius fixats per aquest projecte són desenvolupar dos mòduls de processamentm d'imatges els quals afrontaran dos blocs important en el tractament d'imatges, aquests dos mòduls seran un pre-processat d'imatges, que constarà de tres filtres i un bloc de segmentació per tal de cercar la pròstata dintre de les imatges a tractar. En el projecte es treballarà amb el llenguatge de programació C++, concretament amb unes llibreries que es denominen ITK (Insight Toolkit ) i són open source enfocades al tractament d'imatges mèdiques. A part d'aquesta eina s'utilitzaran d'altres com les Qt que és una biblioteca d'eines per crear entorns gràfics
Estudi i implementació d’un mètode de reconstrucció 3D basat en SfM i registre de vistes 3D parcials
Resumo:
Aquest projecte es basarà en reconstruir una imatge 3D gran a partir d’una seqüència d’imatges 2D capturades per una càmera. Ens centrem en l’estudi de les bases matemàtiques de la visió per computador així com en diferents mètodes emprats en la reconstrucció 3D d’imatges. Per portar a terme aquest estudi s’utilitza la plataforma de desenvolupament MatLab ja que permet tractar operacions matemàtiques, imatges i matrius de gran tamany amb molta senzillesa, rapidesa i eficiència, per aquesta raó s’usa en moltes recerques sobre aquest tema. El projecte aprofundeix en el tema descrit anteriorment estudiant i implementant un mètode que consisteix en aplicar Structure From Motion (SFM) a pocs frames seguits obtinguts d’una seqüència d’imatges 2D per crear una reconstrucció 3D. Quan s’han creat dues reconstruccions 3D consecutives i fent servir un frame com a mínim en comú entre elles, s’aplica un mètode de registre d’estructures 3D, l’Iterative Closest Point (ICP), per crear una reconstrucció 3D més gran a través d’unir les diferents reconstruccions obtingudes a partir de SfM. El mètode consisteix en anar repetint aquestes operacions fins al final dels frames per poder aconseguir una reconstrucció 3D més gran que les petites imatges que s’aconsegueixen a través de SfM. A la Figura 1 es pot veure un esquema del procés que es segueix. Per avaluar el comportament del mètode, utilitzem un conjunt de seqüències sintètiques i un conjunt de seqüències reals obtingudes a partir d’una càmera. L’objectiu final d’aquest projecte és construir una nova toolbox de MatLab amb tots els mètodes per crear reconstruccions 3D grans per tal que sigui possible tractar amb facilitat aquest problema i seguir-lo desenvolupant en un futur
Resumo:
La tecnología LiDAR (Light Detection and Ranging), basada en el escaneado del territorio por un telémetro láser aerotransportado, permite la construcción de Modelos Digitales de Superficie (DSM) mediante una simple interpolación, así como de Modelos Digitales del Terreno (DTM) mediante la identificación y eliminación de los objetos existentes en el terreno (edificios, puentes o árboles). El Laboratorio de Geomática del Politécnico de Milán – Campus de Como- desarrolló un algoritmo de filtrado de datos LiDAR basado en la interpolación con splines bilineares y bicúbicas con una regularización de Tychonov en una aproximación de mínimos cuadrados. Sin embargo, en muchos casos son todavía necesarios modelos más refinados y complejos en los cuales se hace obligatorio la diferenciación entre edificios y vegetación. Este puede ser el caso de algunos modelos de prevención de riesgos hidrológicos, donde la vegetación no es necesaria; o la modelización tridimensional de centros urbanos, donde la vegetación es factor problemático. (...)
Resumo:
Las capacidades para la gestión, procesado y análisis de datos geoespaciales que ofrecen los Sistemas de Información Geográfica unidas a las prestaciones de visualización de los navegadores 3D sobre el terreno, abre una cantidad ilimitada de posibilidades en el área de la cartografía digital y su explotación en diferentes ámbitos técnicos y sociales. (...)
Resumo:
El diagnòstic mitjançant la imatge mèdica s’ha convertit en una eina fonamental en la pràctica clínica, permet entre altres coses, reconstruir a partir d’un conjunt d’imatges 2D, obtingudes a partir d’aparells de captació, qualsevol part de l’organisme d’un pacient i representar-lo en un model 3D. Sobre aquest model 3D poden realitzar-se diferents operacions que faciliten el diagnòstic i la presa de decisions als especialistes. El projecte que es presenta forma part del desenvolupament de la plataforma informàtica de visualització i tractament de dades mèdiques, anomenada Starviewer, que desenvolupen conjuntament el laboratori de Gràfics i Imatge (GiLab) de la Universitat de Girona i l’ Institut de Diagnòstic per la Imatge (IDI) de l’Hospital Josep Trueta de Girona. En particular, en aquest projecte es centra en el diagnòstic del càncer colorectal i el desenvolupament de mètodes i tècniques de suport al seu diagnòstic. Els dos punts claus en el tractament d’aqueta patologia són: la detecció de les lesions I l’estudi de l’evolució d’aquestes lesions, una vegada s’ha iniciat el tractament tumoral. L’objectiu principal d’aquest projecte és implementar i integrar en la plataforma Starviewer les tècniques de visualització i processament de dades necessàries per donar suport als especialistes en el diagnòstic de les lesions del colon. Donada la dificultat en el processament de les dades reals del budell ens proposem: dissenyar i implementar un sistema per crear models sintètics del budell; estudiar, implementar i avaluar les tècniques de processament d’imatge que calen per segmentar lesions de budell; dissenyar i implementar un sistema d’exploració del budell iintegrar de tots els mòduls implementats en la plataforma starviewer
Resumo:
En este trabajo se presenta Capaware, una plataforma de software libre para el desarrollo de aplicaciones geográficas 3D multicapa, que surge a partir de la iniciativa del Instituto Tecnológico de Canarias en colaboración con la Universidad de Las Palmas de Gran Canaria. Este entorno simplifica la creación de aplicaciones 3D sobre territorios geográficos extensos, disponiendo de una herramienta muy visual que aporta un nuevo punto de vista muy importante para una toma de decisiones eficaz. Capaware proporciona una interfaz fácil de usar y muy flexible que simplifica el desarrollo de nuevas aplicaciones, permitiéndonos crear rápidamente entornos virtuales con múltiples capas de información sobre el terreno. Con las capacidades clásicas de un Sistema de Información Geográfica (SIG), Capaware permite actualmente la carga de capas WMS sobre entornos 3D, añadir objetos 3D sobre el terreno, y visualizar elementos dinámicos, ofreciendo una nueva perspectiva de la información analizada. Así mismo, podemos administrar las capas de recursos y elementos que se pueden representar sobre la zona geográfica en cuestión. (...)