923 resultados para 3D accuracy
Resumo:
A novel heteronuclear 3d-4f compound having formula NdCu3L3·13H2O (where H3L = Schiff base derived from 5-bromosalicylaldehyde and glycylglycine and L³ = C11H8 N2O4Br) was obtained. It was characterized by elemental and thermal analyses and magnetic measurements. The Cu(II)-Nd(III) compound is stable up to 323 K. During dehydration process the water molecules are lost in two stages. The magnetic susceptibility data for this complex change with temperature according to the Curie-Weiss law with theta = -35 K. The magnetic moment values decrease from 5.00µB at 303 K to 4.38µB at 76 K.
Resumo:
In order to verify Point-Centered Quarter Method (PCQM) accuracy and efficiency, using different numbers of individuals by per sampled area, in 28 quarter points in an Araucaria forest, southern Paraná, Brazil. Three variations of the PCQM were used for comparison associated to the number of sampled individual trees: standard PCQM (SD-PCQM), with four sampled individuals by point (one in each quarter), second measured (VAR1-PCQM), with eight sampled individuals by point (two in each quarter), and third measuring (VAR2-PCQM), with 16 sampled individuals by points (four in each quarter). Thirty-one species of trees were recorded by the SD-PCQM method, 48 by VAR1-PCQM and 60 by VAR2-PCQM. The level of exhaustiveness of the vegetation census and diversity index showed an increasing number of individuals considered by quadrant, indicating that VAR2-PCQM was the most accurate and efficient method when compared with VAR1-PCQM and SD-PCQM.
Resumo:
The use of intensity-modulated radiotherapy (IMRT) has increased extensively in the modern radiotherapy (RT) treatments over the past two decades. Radiation dose distributions can be delivered with higher conformality with IMRT when compared to the conventional 3D-conformal radiotherapy (3D-CRT). Higher conformality and target coverage increases the probability of tumour control and decreases the normal tissue complications. The primary goal of this work is to improve and evaluate the accuracy, efficiency and delivery techniques of RT treatments by using IMRT. This study evaluated the dosimetric limitations and possibilities of IMRT in small (treatments of head-and-neck, prostate and lung cancer) and large volumes (primitive neuroectodermal tumours). The dose coverage of target volumes and the sparing of critical organs were increased with IMRT when compared to 3D-CRT. The developed split field IMRT technique was found to be safe and accurate method in craniospinal irradiations. By using IMRT in simultaneous integrated boosting of biologically defined target volumes of localized prostate cancer high doses were achievable with only small increase in the treatment complexity. Biological plan optimization increased the probability of uncomplicated control on average by 28% when compared to standard IMRT delivery. Unfortunately IMRT carries also some drawbacks. In IMRT the beam modulation is realized by splitting a large radiation field to small apertures. The smaller the beam apertures are the larger the rebuild-up and rebuild-down effects are at the tissue interfaces. The limitations to use IMRT with small apertures in the treatments of small lung tumours were investigated with dosimetric film measurements. The results confirmed that the peripheral doses of the small lung tumours were decreased as the effective field size was decreased. The studied calculation algorithms were not able to model the dose deficiency of the tumours accurately. The use of small sliding window apertures of 2 mm and 4 mm decreased the tumour peripheral dose by 6% when compared to 3D-CRT treatment plan. A direct aperture based optimization (DABO) technique was examined as a solution to decrease the treatment complexity. The DABO IMRT technique was able to achieve treatment plans equivalent with the conventional IMRT fluence based optimization techniques in the concave head-and-neck target volumes. With DABO the effective field sizes were increased and the number of MUs was reduced with a factor of two. The optimality of a treatment plan and the therapeutic ratio can be further enhanced by using dose painting based on regional radiosensitivities imaged with functional imaging methods.
Resumo:
This master's thesis examines scenarios, which can lead to a reactivity excursion due to boron dilution events in Loviisa nuclear power plant. This thesis also describes how the boron diluted slugs are modelled in the Probabilistic Risk Assessment (PRA) model. At the current model, the valuation of the reactivity risk due to boron dilution has been very conservative, and therefore the reactivity risk during an outage is as much as 9 % of Core Damage Frequency (CDF) and Large Release Frequency (LRF). The main objective of the thesis is to decrease the annual core damage and Large Release Frequency by reducing conservative assumptions in the probabilistic modelling of boron dilution events. The core behavior during boron dilution events was modelled and reported in 2011 by Fortum using three-dimensional core model of Apros. The results of these analyses were reported same year by Fortum. According to the reported results and the analyses made by StarNode visualization program, it seems that some changes could be made in the boron dilution fault trees of the PRA model. As a result, the reactivity risk was decreased to 0.7 % of the annual CDF. In the other words, the total annual CDF and LRF were decreased 8.5 % due to the changes made in the PRA model. However the analyses made by Apros include some uncertainty. The accuracy of the analyses should be validated before making these changes in the official PRA model.
Resumo:
OBJECTIVE: to evaluate the accuracy of frozen section histopathology from fragments of tissue obtained by percutaneous core needle biopsy of palpable tumors in the diagnosis of breast cancer. METHODS: a cohort study was performed on 57 patients with palpable tumors and suspected breast cancer undergoing percutaneous thick needle core biopsy. The fragments were analyzed by the same pathologist. RESULTS: frozen section diagnosed 16 benign cases (28.6%) and 40 malignant (71.4%), whereas paraffin showed that 15 were benign (26.8%) and 41 malignant (73.2%). Histopathological examinations were concordant in 55 cases and there was one false-negative (6.2%). Statistics rates were: negative predictive value of 93.8%, positive predictive value of 100%, no false-positive (0%), one false negative (6.2%), specificity of 100%, sensitivity of 97 6%; observed agreement = 98.2%; expected agreement = 59.9%, Kappa = 0.955 [ 95% CI = 0.925-0.974, p < 0.01 ]. CONCLUSIONS: frozen section histopathological findings showed excellent correlation with the findings by the technique in paraffin in the fragments of palpable breast tumors obtained by thick needle percutaneous core biopsy (98.2% accuracy). Therefore, in these patients, it was possible to anticipate the diagnosis, staging and the breast cancer treatment planning.
Accuracy of doppler ultrasonography in the evaluation of hemodialysis arteriovenous fistula maturity
Resumo:
PURPOSE: To evaluate the accuracy of sonographic endometrial thickness and hysteroscopic characteristics in predicting malignancy in postmenopausal women undergoing surgical resection of endometrial polyps. METHODS: Five hundred twenty-one (521) postmenopausal women undergoing hysteroscopic resection of endometrial polyps between January 1998 and December 2008 were studied. For each value of sonographic endometrial thickness and polyp size on hysteroscopy, the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated in relation to the histologic diagnosis of malignancy. The best values of sensitivity and specificity for the diagnosis of malignancy were determined by the Receiver Operating Characteristic (ROC) curve. RESULTS: Histologic diagnosis identified the presence of premalignancy or malignancy in 4.1% of cases. Sonographic measurement revealed a greater endometrial thickness in cases of malignant polyps when compared to benign and premalignant polyps. On surgical hysteroscopy, malignant endometrial polyps were also larger. An endometrial thickness of 13 mm showed a sensitivity of 69.6%, specificity of 68.5%, PPV of 9.3%, and NPV of 98% in predicting malignancy in endometrial polyps. Polyp measurement by hysteroscopy showed that for polyps 30 mm in size, the sensitivity was 47.8%, specificity was 66.1%, PPV was 6.1%, and NPV was 96.5% for predicting cancer. CONCLUSIONS: Sonographic endometrial thickness showed a higher level of accuracy than hysteroscopic measurement in predicting malignancy in endometrial polyps. Despite this, both techniques showed low accuracy for predicting malignancy in endometrial polyps in postmenopausal women. In suspected cases, histologic evaluation is necessary to exclude malignancy.
Resumo:
Transportation of fluids is one of the most common and energy intensive processes in the industrial and HVAC sectors. Pumping systems are frequently subject to engineering malpractice when dimensioned, which can lead to poor operational efficiency. Moreover, pump monitoring requires dedicated measuring equipment, which imply costly investments. Inefficient pump operation and improper maintenance can increase energy costs substantially and even lead to pump failure. A centrifugal pump is commonly driven by an induction motor. Driving the induction motor with a frequency converter can diminish energy consumption in pump drives and provide better control of a process. In addition, induction machine signals can also be estimated by modern frequency converters, dispensing with the use of sensors. If the estimates are accurate enough, a pump can be modelled and integrated into the frequency converter control scheme. This can open the possibility of joint motor and pump monitoring and diagnostics, thereby allowing the detection of reliability-reducing operating states that can lead to additional maintenance costs. The goal of this work is to study the accuracy of rotational speed, torque and shaft power estimates calculated by a frequency converter. Laboratory tests were performed in order to observe estimate behaviour in both steady-state and transient operation. An induction machine driven by a vector-controlled frequency converter, coupled with another induction machine acting as load was used in the tests. The estimated quantities were obtained through the frequency converter’s Trend Recorder software. A high-precision, HBM T12 torque-speed transducer was used to measure the actual values of the aforementioned variables. The effect of the flux optimization energy saving feature on the estimate quality was also studied. A processing function was developed in MATLAB for comparison of the obtained data. The obtained results confirm the suitability of this particular converter to provide accurate enough estimates for pumping applications.
Resumo:
Cyanobacteria are unicellular, non-nitrogen-fixing prokaryotes, which perform photosynthesis similarly as higher plants. The cyanobacterium Synechocystis sp. strain PCC 6803 is used as a model organism in photosynthesis research. My research described herein aims at understanding the function of the photosynthetic machinery and how it responds to changes in the environment. Detailed knowledge of the regulation of photosynthesis in cyanobacteria can be utilized for biotechnological purposes, for example in the harnessing of solar energy for biofuel production. In photosynthesis, iron participates in electron transfer. Here, we focused on iron transport in Synechocystis sp. strain PCC 6803 and particularly on the environmental regulation of the genes encoding the FutA2BC ferric iron transporter, which belongs to the ABC transporter family. A homology model built for the ATP-binding subunit FutC indicates that it has a functional ATPbinding site as well as conserved interactions with the channel-forming subunit FutB in the transporter complex. Polyamines are important for the cell proliferation, differentiation and apoptosis in prokaryotic and eukaryotic cells. In plants, polyamines have special roles in stress response and in plant survival. The polyamine metabolism in cyanobacteria in response to environmental stress is of interest in research on stress tolerance of higher plants. In this thesis, the potd gene encoding an polyamine transporter subunit from Synechocystis sp. strain PCC 6803 was characterized for the first time. A homology model built for PotD protein indicated that it has capability of binding polyamines, with the preference for spermidine. Furthermore, in order to investigate the structural features of the substrate specificity, polyamines were docked into the binding site. Spermidine was positioned very similarly in Synechocystis PotD as in the template structure and had most favorable interactions of the docked polyamines. Based on the homology model, experimental work was conducted, which confirmed the binding preference. Flavodiiron proteins (Flv) are enzymes, which protect the cell against toxicity of oxygen and/or nitric oxide by reduction. In this thesis, we present a novel type of photoprotection mechanism in cyanobacteria by the heterodimer of Flv2/Flv4. The constructed homology model of Flv2/Flv4 suggests a functional heterodimer capable of rapid electron transfer. The unknown protein sll0218, encoded by the flv2-flv4 operon, is assumed to facilitate the interaction of the Flv2/Flv4 heterodimer and energy transfer between the phycobilisome and PSII. Flv2/Flv4 provides an alternative electron transfer pathway and functions as an electron sink in PSII electron transfer.
Resumo:
This work describes techniques for modeling, optimizing and simulating calibration processes of robots using off-line programming. The identification of geometric parameters of the nominal kinematic model is optimized using techniques of numerical optimization of the mathematical model. The simulation of the actual robot and the measurement system is achieved by introducing random errors representing their physical behavior and its statistical repeatability. An evaluation of the corrected nominal kinematic model brings about a clear perception of the influence of distinct variables involved in the process for a suitable planning, and indicates a considerable accuracy improvement when the optimized model is compared to the non-optimized one.
Resumo:
By coupling the Boundary Element Method (BEM) and the Finite Element Method (FEM) an algorithm that combines the advantages of both numerical processes is developed. The main aim of the work concerns the time domain analysis of general three-dimensional wave propagation problems in elastic media. In addition, mathematical and numerical aspects of the related BE-, FE- and BE/FE-formulations are discussed. The coupling algorithm allows investigations of elastodynamic problems with a BE- and a FE-subdomain. In order to observe the performance of the coupling algorithm two problems are solved and their results compared to other numerical solutions.
Resumo:
A non isotropic turbulence model is extended and applied to three dimensional stably stratified flows and dispersion calculations. The model is derived from the algebraic stress model (including wall proximity effects), but it retains the simplicity of the "eddy viscosity" concept of first order models. The "modified k-epsilon" is implemented in a three dimensional numerical code. Once the flow is resolved, the predicted velocity and turbulence fields are interpolated into a second grid and used to solve the concentration equation. To evaluate the model, various steady state numerical solutions are compared with small scale dispersion experiments which were conducted at the wind tunnel of Mitsubishi Heavy Industries, in Japan. Stably stratified flows and plume dispersion over three distinct idealized complex topographies (flat and hilly terrain) are studied. Vertical profiles of velocity and pollutant concentration are shown and discussed. Also, comparisons are made against the results obtained with the standard k-epsilon model.