850 resultados para 270805 Genetic Engineering and Enzyme Technology
Resumo:
The profitability of momentum portfolios in the equity markets is derived from the continuation of stock returns over medium time horizons. The empirical evidence of momentum, however, is significantly different across markets around the world. The purpose of this dissertation is to: (1) help global investors determine the optimal selection and holding periods for momentum portfolios, (2) evaluate the profitability of the optimized momentum portfolios in different time periods and market states, (3) assess the investment strategy profits after considering transaction costs, and (4) interpret momentum returns within the framework of prior studies on investors’ behavior. Improving on the traditional practice of selecting arbitrary selection and holding periods, a genetic algorithm (GA) is employed. The GA performs a thorough and structured search to capture the return continuations and reversals patterns of momentum portfolios. Three portfolio formation methods are used: price momentum, earnings momentum, and earnings and price momentum and a non-linear optimization procedure (GA). The focus is on common equity of the U.S. and a select number of countries, including Australia, France, Germany, Japan, the Netherlands, Sweden, Switzerland and the United Kingdom. The findings suggest that the evolutionary algorithm increases the annualized profits of the U.S. momentum portfolios. However, the difference in mean returns is statistically significant only in certain cases. In addition, after considering transaction costs, both price and earnings and price momentum portfolios do not appear to generate abnormal returns. Positive risk-adjusted returns net of trading costs are documented solely during “up” markets for a portfolio long in prior winners only. The results on the international momentum effects indicate that the GA improves the momentum returns by 2 to 5% on an annual basis. In addition, the relation between momentum returns and exchange rate appreciation/depreciation is examined. The currency appreciation does not appear to influence significantly momentum profits. Further, the influence of the market state on momentum returns is not uniform across the countries considered. The implications of the above findings are discussed with a focus on the practical aspects of momentum investing, both in the U.S. and globally.
Resumo:
Automated information system design and implementation is one of the fastest changing aspects of the hospitality industry. During the past several years nothing has increased the professionalism or improved the productivity within the industry more than the application of computer technology. Intuitive software applications, deemed the first step toward making computers more people-literate, object-oriented programming, intended to more accurately model reality, and wireless communications are expected to play a significant role in future technological advancement.
Resumo:
The profitability of momentum portfolios in the equity markets is derived from the continuation of stock returns over medium time horizons. The empirical evidence of momentum, however, is significantly different across markets around the world. The purpose of this dissertation is to: 1) help global investors determine the optimal selection and holding periods for momentum portfolios, 2) evaluate the profitability of the optimized momentum portfolios in different time periods and market states, 3) assess the investment strategy profits after considering transaction costs, and 4) interpret momentum returns within the framework of prior studies on investors’ behavior. Improving on the traditional practice of selecting arbitrary selection and holding periods, a genetic algorithm (GA) is employed. The GA performs a thorough and structured search to capture the return continuations and reversals patterns of momentum portfolios. Three portfolio formation methods are used: price momentum, earnings momentum, and earnings and price momentum and a non-linear optimization procedure (GA). The focus is on common equity of the U.S. and a select number of countries, including Australia, France, Germany, Japan, the Netherlands, Sweden, Switzerland and the United Kingdom. The findings suggest that the evolutionary algorithm increases the annualized profits of the U.S. momentum portfolios. However, the difference in mean returns is statistically significant only in certain cases. In addition, after considering transaction costs, both price and earnings and price momentum portfolios do not appear to generate abnormal returns. Positive risk-adjusted returns net of trading costs are documented solely during “up” markets for a portfolio long in prior winners only. The results on the international momentum effects indicate that the GA improves the momentum returns by 2 to 5% on an annual basis. In addition, the relation between momentum returns and exchange rate appreciation/depreciation is examined. The currency appreciation does not appear to influence significantly momentum profits. Further, the influence of the market state on momentum returns is not uniform across the countries considered. The implications of the above findings are discussed with a focus on the practical aspects of momentum investing, both in the U.S. and globally.
Resumo:
Family health history (FHH) in the context of risk assessment has been shown to positively impact risk perception and behavior change. The added value of genetic risk testing is less certain. The aim of this study was to determine the impact of Type 2 Diabetes (T2D) FHH and genetic risk counseling on behavior and its cognitive precursors. Subjects were non-diabetic patients randomized to counseling that included FHH +/- T2D genetic testing. Measurements included weight, BMI, fasting glucose at baseline and 12 months and behavioral and cognitive precursor (T2D risk perception and control over disease development) surveys at baseline, 3, and 12 months. 391 subjects enrolled of which 312 completed the study. Behavioral and clinical outcomes did not differ across FHH or genetic risk but cognitive precursors did. Higher FHH risk was associated with a stronger perceived T2D risk (pKendall < 0.001) and with a perception of "serious" risk (pKendall < 0.001). Genetic risk did not influence risk perception, but was correlated with an increase in perception of "serious" risk for moderate (pKendall = 0.04) and average FHH risk subjects (pKendall = 0.01), though not for the high FHH risk group. Perceived control over T2D risk was high and not affected by FHH or genetic risk. FHH appears to have a strong impact on cognitive precursors of behavior change, suggesting it could be leveraged to enhance risk counseling, particularly when lifestyle change is desirable. Genetic risk was able to alter perceptions about the seriousness of T2D risk in those with moderate and average FHH risk, suggesting that FHH could be used to selectively identify individuals who may benefit from genetic risk testing.
Resumo:
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Resumo:
The Caribbean genus Pseudophoenix (Arecaceae) has its center of taxonomic diversity in Hispaniola (Haiti and the Dominican Republic). Three species (P. ekmanii, P. lediniana, and P. vinifera) are restricted to this island. In this thesis I investigated the population genetic diversity and structure of Pseudophoenix using ten microsatellite loci. Results showed homozygote excess and high inbreeding coefficients in all populations across all polymorphic loci. Overall, there was high differentiation among populations. Results from the Bayesian and Neighbor Joining cluster analyses identified groups that were consistence with currently accepted species delimitation. We included the only known population of an undescribed morph from the Dominican Republic that has been suggested to represent a new species. Results from the cluster analyses suggested that this putative species is closely related to P. sargentii from Turk and Caicos. Our study provided insights pertinent to the conservation genetics and management of this genus in Hispaniola.
Resumo:
The information architecture supports information retrieval by users in Web environment. The design should be center in the information user, favoring usability. The Faculty of Industrial Engineering and Tourism of the Universidad Central "Marta Abreu" de Las Villas, lacks a site that enhances the disclosure of information to its members. Are presented as objectives of the study: 1) conduct a user survey to identify information needs of users, 2) establish guidelines for information architecture for the institution focused on users, 3) designing the information architecture for the institution and 4) designed to evaluate the proposal. Are presented as objectives of the study: 1) to realize a user study to identify the information needs of users, 2) establish guidelines for information architecture for the institution focused on users, 3) to design the information architecture for the institution and 4) to evaluate the proposal designed. To obtain results are used methods in the theoretical and empirical levels. Besides, are use techniques that favored the design and evaluation. Is designed the intranet of the Faculty of Industrial Engineering and Tourism. Is evaluated the proposed design for the validation of the results.
Resumo:
Here we report recombinant expression and activity of the Saccharomyces cerevisiae type 2 diacylglycerol acyltransferase DGA1 functioning in parallel with the native Nannochloropsis salina genes. Expression of DGA1 shifted the chain length distribution of fatty acids produced and reflected an oleoyl-CoA substrate preference. Effect on the total FAME content was moderate and elevated by a maximum of 38%. Expression of the DGA1 transgene varied throughout the culture life cycle and evidence of growth dependent environmental silencing of the transgene was observed. This is to our knowledge the first example of silencing and subsequent resetting in a transgenic microalga. Results from this study add valuable insights into the efficacy of algal genetic engineering and use of these microorganisms as bio-platforms for chemical manufacture.
Resumo:
Here we report recombinant expression and activity of the Saccharomyces cerevisiae type 2 diacylglycerol acyltransferase DGA1 functioning in parallel with the native Nannochloropsis salina genes. Expression of DGA1 shifted the chain length distribution of fatty acids produced and reflected an oleoyl-CoA substrate preference. Effect on the total FAME content was moderate and elevated by a maximum of 38%. Expression of the DGA1 transgene varied throughout the culture life cycle and evidence of growth dependent environmental silencing of the transgene was observed. This is to our knowledge the first example of silencing and subsequent resetting in a transgenic microalga. Results from this study add valuable insights into the efficacy of algal genetic engineering and use of these microorganisms as bio-platforms for chemical manufacture.
Resumo:
This paper presents a model for availability analysis of standalone hybrid microgrid. The microgrid used in the study consists of wind, solar storage and diesel generator. Boolean driven Markov process is used to develop the availability of the system in the proposed method. By modifying the developed model, the relationship between the availability of the system with the fine (normal) weather and disturbed (stormy) weather durations are analyzed. Effects of different converter technologies on the availability of standalone microgrid were investigated and the results have shown that the availability of microgrid increased by 5.80 % when a storage system is added. On the other hand, the availability of standalone microgrid could be overestimated by 3.56 % when weather factor is neglected. In the same way 200, 500 and 1000 hours of disturbed weather durations reduced the availability of the system by 5.36%, 9.73% and 13.05 %, respectively. In addition, the hybrid energy storage cascade topology with a capacitor in the middle maximized the system availability.
Resumo:
Ground-source heat pump (GSHP) systems represent one of the most promising techniques for heating and cooling in buildings. These systems use the ground as a heat source/sink, allowing a better efficiency thanks to the low variations of the ground temperature along the seasons. The ground-source heat exchanger (GSHE) then becomes a key component for optimizing the overall performance of the system. Moreover, the short-term response related to the dynamic behaviour of the GSHE is a crucial aspect, especially from a regulation criteria perspective in on/off controlled GSHP systems. In this context, a novel numerical GSHE model has been developed at the Instituto de Ingeniería Energética, Universitat Politècnica de València. Based on the decoupling of the short-term and the long-term response of the GSHE, the novel model allows the use of faster and more precise models on both sides. In particular, the short-term model considered is the B2G model, developed and validated in previous research works conducted at the Instituto de Ingeniería Energética. For the long-term, the g-function model was selected, since it is a previously validated and widely used model, and presents some interesting features that are useful for its combination with the B2G model. The aim of the present paper is to describe the procedure of combining these two models in order to obtain a unique complete GSHE model for both short- and long-term simulation. The resulting model is then validated against experimental data from a real GSHP installation.
Resumo:
Understanding the population structure and patterns of gene flow within species is of fundamental importance to the study of evolution. In the fields of population and evolutionary genetics, measures of genetic differentiation are commonly used to gather this information. One potential caveat is that these measures assume gene flow to be symmetric. However, asymmetric gene flow is common in nature, especially in systems driven by physical processes such as wind or water currents. As information about levels of asymmetric gene flow among populations is essential for the correct interpretation of the distribution of contemporary genetic diversity within species, this should not be overlooked. To obtain information on asymmetric migration patterns from genetic data, complex models based on maximum-likelihood or Bayesian approaches generally need to be employed, often at great computational cost. Here, a new simpler and more efficient approach for understanding gene flow patterns is presented. This approach allows the estimation of directional components of genetic divergence between pairs of populations at low computational effort, using any of the classical or modern measures of genetic differentiation. These directional measures of genetic differentiation can further be used to calculate directional relative migration and to detect asymmetries in gene flow patterns. This can be done in a user-friendly web application called divMigrate-online introduced in this study. Using simulated data sets with known gene flow regimes, we demonstrate that the method is capable of resolving complex migration patterns under a range of study designs.
Resumo:
[EN] For many species, there is broad-scale dispersal of juvenile stages and/or long-distance migration of individuals and hence the processes that drive these various wide-ranging move- ments have important life-history consequences. Sea turtles are one of these paradigmatic long-distance travellers, with hatchlings thought to be dispersed by ocean currents and adults often shuttling between distant breeding and foraging grounds. Here, we use multi- disciplinary oceanographic, atmospheric and genetic mixed stock analyses to show that juvenile turtles are encountered ‘downstream’ at sites predicted by currents. However, in some cases, unusual occurrences of juveniles are more readily explained by storm events and we show that juvenile turtles may be displaced thousands of kilometres from their expected dispersal based on prevailing ocean currents.
Resumo:
[EN] For many species, there is broad-scale dispersal of juvenile stages and/or long-distance migration of individuals and hence the processes that drive these various wide-ranging move- ments have important life-history consequences. Sea turtles are one of these paradigmatic long-distance travellers, with hatchlings thought to be dispersed by ocean currents and adults often shuttling between distant breeding and foraging grounds. Here, we use multi- disciplinary oceanographic, atmospheric and genetic mixed stock analyses to show that juvenile turtles are encountered ‘downstream’ at sites predicted by currents. However, in some cases, unusual occurrences of juveniles are more readily explained by storm events and we show that juvenile turtles may be displaced thousands of kilometres from their expected dispersal based on prevailing ocean currents.
Resumo:
A l’heure actuelle, les biocarburants renouvelables et qui ne nuit pas à l'environnement sont à l'étude intensive en raison de l'augmentation des problèmes de santé et de la diminution des combustibles fossiles. H2 est l'un des candidats les plus prometteurs en raison de ses caractéristiques uniques, telles que la densité d'énergie élevée et la génération faible ou inexistante de polluants. Une façon attrayante pour produire la H2 est par les bactéries photosynthétiques qui peuvent capter l'énergie lumineuse pour actionner la production H2 avec leur système de nitrogénase. L'objectif principal de cette étude était d'améliorer le rendement de H2 des bactéries photosynthétiques pourpres non sulfureuses utilisant une combinaison de génie métabolique et le plan des expériences. Une hypothèse est que le rendement en H2 pourrait être améliorée par la redirection de flux de cycle du Calvin-Benson-Bassham envers du système de nitrogénase qui catalyse la réduction des protons en H2. Ainsi, un PRK, phosphoribulose kinase, mutant « knock-out » de Rhodobacter capsulatus JP91 a été créé. L’analyse de la croissance sur des différentes sources de carbone a montré que ce mutant ne peut croître qu’avec l’acétate, sans toutefois produire d' H2. Un mutant spontané, YL1, a été récupéré qui a retenu l'cbbP (codant pour PRK) mutation d'origine, mais qui avait acquis la capacité de se développer sur le glucose et produire H2. Une étude de la production H2 sous différents niveaux d'éclairage a montré que le rendement d’YL1 était de 20-40% supérieure à la souche type sauvage JP91. Cependant, il n'y avait pas d'amélioration notable du taux de production de H2. Une étude cinétique a montré que la croissance et la production d'hydrogène sont fortement liées avec des électrons à partir du glucose principalement dirigés vers la production de H2 et la formation de la biomasse. Sous des intensités lumineuses faibles à intermédiaires, la production d'acides organiques est importante, ce qui suggère une nouvelle amélioration additionnel du rendement H2 pourrait être possible grâce à l'optimisation des processus. Dans une série d'expériences associées, un autre mutant spontané, YL2, qui a un phénotype similaire à YL1, a été testé pour la croissance dans un milieu contenant de l'ammonium. Les résultats ont montré que YL2 ne peut croître que avec de l'acétate comme source de carbone, encore une fois, sans produire de H2. Une incubation prolongée dans les milieux qui ne supportent pas la croissance de YL2 a permis l'isolement de deux mutants spontanés secondaires intéressants, YL3 et YL4. L'analyse par empreint du pied Western a montré que les deux souches ont, dans une gamme de concentrations d'ammonium, l'expression constitutive de la nitrogénase. Les génomes d’YL2, YL3 et YL4 ont été séquencés afin de trouver les mutations responsables de ce phénomène. Fait intéressant, les mutations de nifA1 et nifA2 ont été trouvés dans les deux YL3 et YL4. Il est probable qu'un changement conformationnel de NifA modifie l'interaction protéine-protéine entre NifA et PII protéines (telles que GlnB ou GlnK), lui permettant d'échapper à la régulation par l'ammonium, et donc d'être capable d'activer la transcription de la nitrogénase en présence d'ammonium. On ignore comment le nitrogénase synthétisé est capable de maintenir son activité parce qu’en théorie, il devrait également être soumis à une régulation post-traductionnelle par ammonium. Une autre preuve pourrait être obtenue par l'étude du transcriptome d’YL3 et YL4. Une première étude sur la production d’ H2 par YL3 et YL4 ont montré qu'ils sont capables d’une beaucoup plus grande production d'hydrogène que JP91 en milieu d'ammonium, qui ouvre la porte pour les études futures avec ces souches en utilisant des déchets contenant de l'ammonium en tant que substrats. Enfin, le reformage biologique de l'éthanol à H2 avec la bactérie photosynthétique, Rhodopseudomonas palustris CGA009 a été examiné. La production d'éthanol avec fermentation utilisant des ressources renouvelables microbiennes a été traitée comme une technique mature. Cependant, la plupart des études du reformage de l'éthanol à H2 se sont concentrés sur le reformage chimique à la vapeur, ce qui nécessite généralement une haute charge énergetique et résultats dans les émissions de gaz toxiques. Ainsi le reformage biologique de l'éthanol à H2 avec des bactéries photosynthétiques, qui peuvent capturer la lumière pour répondre aux besoins énergétiques de cette réaction, semble d’être plus prometteuse. Une étude précédente a démontré la production d'hydrogène à partir d'éthanol, toutefois, le rendement ou la durée de cette réaction n'a pas été examiné. Une analyse RSM (méthode de surface de réponse) a été réalisée dans laquelle les concentrations de trois facteurs principaux, l'intensité lumineuse, de l'éthanol et du glutamate ont été variés. Nos résultats ont montré que près de 2 moles de H2 peuvent être obtenus à partir d'une mole d'éthanol, 33% de ce qui est théoriquement possible.