969 resultados para 20S-15N
Resumo:
The isotopic composition of nitrogen in pore water ammonium and in sedimentary organic matter (Norg) was measured at Sites 1234 and 1235 in order to evaluate the impact of long-term (>100 k.y.) diagenesis on d15N of preserved organic matter. At both sites, the average d15N of pore water ammonium and Norg are within 0.2 per mil to 0.4 per mil. The small difference is less than the analytical uncertainty, indicating that no significant isotopic fractionation is associated with decomposition of organic matter in these sediments. A mass balance for nitrogen was also computed, indicating that ~20% of the organic matter flux buried below 1.45 meters composite depth (mcd) is degraded between this depth and 40 mcd (Site 1235) to 60 mcd (Site 1234) depth. Two factors determine the absence of isotopic fractionation in these sediments: 1. A high degree of organic matter preservation due to rapid sediment accumulation rates at both sites. 2. The dominance of a marine component in the sedimentary organic matter (with only a small fraction contributed by a terrestrial component).
Resumo:
The oxygen and carbon isotopic compositions of the planktonic foraminifer, Neogloboquadrina pachyderma (sinistral), were determined at 20-cm intervals through the 'composite' top ~ 22 m of sediments at ODP Site 645 (Holes 645B, 645C, 645F, and 645G) and at 10-cm intervals through a 9-m piston core (85-027-016) collected during the Hudson site survey. Quantitative analyses of palynomorphs, notably dinocysts, and of planktonic foraminifers were performed. Organic and nitrogen contents and isotopic composition of nitrogen and carbon in organic matter also were determined. These data provide a high-resolution record of changes that occurred in surface-water masses during the last glacial cycle in Baffin Bay. The basin experienced low planktonic productivity during most of the late Pleistocene, either from dilution in surface water by meltwater discharges from the surrounding ice-sheet or from the presence of a relatively dense sea-ice cover. Peaks of meltwater discharge are indicated by d18O values as low as about 1.5 per mil, correlative d13C- d18O shifts, low concentration of planktonic foraminifers, high concentrations of glacially reworked pre-Quaternary palynomorphs, and low-salinity dinocyst assemblages. As a whole, d18O values ranging between 4.5 and 2.5 per mil allow the establishment of an 18O stratigraphy spanning isotopic stages 5 to 1. Because of the poor core recovery, the general paucity of microflora and microfauna, and the possible occurrence of slumping or debris flow at Site 645, further interpretation remains problematic.
Resumo:
The largest increase in export production in the eastern Pacific of the last 5.3 Myr (million years) occurred between 2.2 and 1.6 Myr, a time of major climatic and oceanographic reorganization in the region. Here, we investigate the causes of this event using reconstructions of export production, nutrient supply and oceanic conditions across the Pliocene-Pleistocene in the eastern equatorial Pacific (EEP) for the last 3.2 Myr. Our results indicate that the export production peak corresponds to a cold interval marked by high nutrient supply relative to consumption, as revealed by the low bulk sedimentary 15N/14N (d15N) and alkenone-derived sea surface temperature (SST) values. This ?0.6 million year long episode of enhanced delivery of nutrients to the surface of the EEP was predominantly initiated through the upwelling of nutrient-enriched water sourced in high latitudes. In addition, this phenomenon was likely promoted by the regional intensification of upwelling in response to the development of intense Walker and Hadley atmospheric circulations. Increased nutrient consumption in the polar oceans and enhanced denitrification in the equatorial regions restrained nutrient supply and availability and terminated the high export production event.
Resumo:
Millennial-scale paleoceanographic changes in the Bering Sea during the last 71 kyrs were reconstructed using geochemical and isotope proxies (biogenic opal, CaCO3, and total organic carbon (TOC), nitrogen and carbon isotopes of sedimentary organic matters) and microfossil (radiolaria and foraminifera) data from two cores (PC23A and PC24A) which were collected from the northern continental slope area at intermediate water depths. Biogenic opal and TOC contents were generally high with high sedimentation rates during the last deglaciation. Laminated sediment depositions during the Early-Holocene (EH) and Bølling-Allerød (BA) were closely related with the increased primary productivity recorded by high biogenic opal and TOC contents and high d15N values. Enhanced surface-water productivity was attributed to increased nutrient supply from strengthened Bering Slope Current (BSC) and from increased amount of glacial melt-water, resulting in high C/N ratios and low d13C values, and high proportion of Rhizoplegma boreale during the last deglaciation. In contrast, low surface-water productivity during the last glacial period was due to depleted nutrient supply caused by strong stratification and to restricted phytoplankton bloom by extensive sea ice distribution under cold climates. Extensive formation of sea ice produces more oxygen-rich intermediate-water, leading to oxic bottom-water conditions due to active ventilation, which favored good preservation of oxic benthic foraminifera species. Remarkable CaCO3 peaks coeval with high biogenic opal and TOC contents in both cores during MIS 3 to MIS 4 are most likely correlated with Dansgaard-Oeschger (D-O) events. High d15N and d13Corg values during D-O interstadials support increased surface-water productivity resulting from nutrients supplied mainly by intensified BSC. During the EH, BA and D-O interstadials, dominant benthic foraminifera species indicate dysoxic bottom-water conditions as a result of increased surface-water productivity and weak ventilation of intermediate-water with mitigated sea ice development caused by strengthening of the Alaskan Stream. It is of note that the bottom-water conditions and formation of intermediate-water in the Bering Sea during the last glacial period are related to the variation of dissolved oxygen concentration of the bottom-water in the northeastern Pacific and to strong ventilation of intermediate-water in the northwestern Pacific. Thus, the millennial-scale paleoceanographic events in the Bering Sea during the D-O interstadials are closely associated with the intermediate-water ventilation, ultimately leading to weakening of North Pacific Intermediate Water.