986 resultados para 17 Oxygen
Resumo:
Oxovanadium(IV) complexes [VO(sal-argH)(B)] Cl (1-3) and [VO(sal-lysH)(B)] Cl (4-6), where sal-argH2 and sal-lysH(2) are N-salicylidene-L-arginine and N-salicylidene-L-lysine Schiff bases and B is a phenanthroline base, viz. 1,10-phenanthroline (phen in 1 and 4); dipyrido[3,2-d: 2', 3'-f] quinoxaline (dpq in 2 and 5) and dipyrido[3,2-a: 2', 3'-c] phenazine (dppz in 3 and 6), have been prepared, characterized and their DNA photocleavage activity studied. Complex 1, characterized by X-ray crystallography, shows the presence of a vanadyl group in VIVO3N3 coordination geometry with a tridentate Schiff base having a pendant guanidinium moiety and bidentate phen ligand. The complexes exhibit a d-d band at similar to 715 nm in 20% DMF-Tris-HCl buffer. The complexes are redox active showing cathodic and anodic responses near -1.0 V and 0.85 V (vs. SCE) for the V(IV)-V(III) and V(V)-V(IV) couples, respectively, in DMF-Tris-HCl buffer. The complexes bind to calf thymus DNA giving Kb values in the range of 3.8 x 10(4) to 1.6 x 10(5) M-1. Thermal denaturation and viscosity data suggest DNA groove binding nature of the complexes. The complexes do not show any `chemical nuclease'' activity in dark in the presence of 3-mercaptopropionic acid or H2O2. The dpq and dppz complexes are efficient photocleavers of plasmid DNA in UV-A (365 nm) and red light (676 nm) via singlet oxygen pathway. The dppz complexes exhibit photocytotoxicity in HeLa cancer cells giving IC50 values of 15.4 mu M for 3 and 17.5 mu M for 6 in visible light while being non-toxic in dark giving IC50 values of > 100 mu M.
Resumo:
Superconductivity in LnBa2Cu3O7 − δ with Ln = Nd, Eu, Gdand Dy has been investigated as a function of δ, closely following the accompanying changes in crystal structure. Orthorhombic GdBa2Cu3O7 − δ and DyBa2Cu3O7 − δ show a Tc of ≈ 90 K up to δ = 0.2 and a lower Tc plateau (40–50 K) in the δ range 02 to 0.4, similar to that found in YBa2Cu3O7 − δ. The orthorhombic structure II in the lower Tc regions is different from the structure I in the 90 K Tc (low δ) region. The unit cell parameters of the orthorhombic I structure in the high Tc region bear the relationship of a a ≠ b not, vert, similar c/3. This relationship is not seen in the low Tc plateau. The low Tc plateau region does not distinctly manifest itself in NdBa2Cu3O7 − δ just as in LaBa2Cu3O7 − δ.
Resumo:
Core-level spectroscopic studies show the presence of holes on oxygen in LaNiO3 and LiNiO2 Nickel in these oxides seems to be essentially in the 2+ state instead of the 3+ state-where it would formally be expected to be on the basis of the stoichiometry.
Resumo:
Statistical methods for optimizing the morphology of oxide-based, bifunctional oxygen electrodes for use in rechargeable metal/air batteries are examined with regard to binder composition, compaction time, and compaction load. Results show that LaNiO3 with PTFE binder in a nickel mesh envelope provides a satisfactory electrode.
Resumo:
X.p.s. studies on the adsorption of oxygen on a barium-covered Pb surface have shown the presence of two distinct types of oxygen species: oxidic, O2–, and the peroxo-like O2–2(ads), and the surface has been identified as a composite of PbO and BaPbO3. On a barium pre-covered surface, the sticking probability of oxygen on Pb is increased. The O2–(ads) species preferentially reacts with HCl forming PbCl2(ads)via proton abstraction, whereas O2–2(ads) is not reactive with HCl vapour. On the Pb surface, the PbCl2 overlayer reacts with excess HCl, forming a volatile compound believed to be Pb(ClHCl)2, while in the presence of coadsorbed barium, the stability of PbCl2 is increased and the activation energy for the reaction: PbCl2(ads)+ 2HCl(g) Pb(ClHCl)2(g) is increased. Stronger intermetallic interaction is suggested to be the reason for higher PbCl2 stability.
Resumo:
We combine first-principles calculations with EXAFS studies to investigate the origin of high oxygen storage capacity in ceria-zirconia solid solution, prepared by solution combustion method. We find that nanocrystalline Ce0.5Zr0.5O2 can be reduced to Ce0.5Zr0.5O1.57 by H-2 upto 850 degrees C with an OSC of 65 cc/gm which is extremely high. Calculated local atomic-scale structure reveals the presence of long and short bonds resulting in four-fold coordination of the cations, confirmed by the EXAFS studies. Bond valence analysis of the microscopic structure and energetics is used to evaluate the strength of binding of different oxide ions and vacancies. We find the presence of strongly and weakly bound oxygens, of which the latter are responsible for the higher oxygen storage capacity in the mixed oxides than in the pure CeO2.
Resumo:
Density measurements on large single-crystal specimens of La2NiO4+δ and Pr2NiO4+δ show that oxygen nonstoichiometry arises from the presence of excess lattice oxygen. X-ray photoelectron spectra as well as X-ray absorption edge studies provide no evidence for the existence of Ni3+ in these oxygen-excess nickelates under the conditions of the measurements. Transmission electron microscopy has revealed a novel type of exsolution process of the stoichiometric phase out of nonstoichiometric La2NiO4 during heating in CO2 at 870 K for 3 h. An interpretation of the results in terms of the existence of peroxide species within the conducting layers is proposed.
Resumo:
Thermogravimetric curves of the superconducting samples (0.0 ≤ δ left angle bracket0.5) of YBa2Cu3O7−δ are shown to be characteristically different from those of the non-superconducting samples (δreverse similar, equals0.5–1.0). The variation of Tc (from resistivity measurements) with δ confirms for a change from Image to Image Bands found in bright or dark field electron micrographs are shown to arise for different orientations of the [CuO2]∞ planes, causing oxygen enrichment in the boundaries. A new defect with missing Y-rows is found in the images of Y1−xBa2Cu3O7.
Resumo:
Oxygen storage/release (OSC) capacity is an important feature common to all three-way catalysts to combat harmful exhaust emissions. To understand the mechanism of improved OSC for doped CeO2, we undertook the structural investigation by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H-2-TPR (temperature-programmed hydrogen reduction) and density functional theoretical (DFT) calculations of transition-metal-, noble-metal-, and rare-earth (RE)-ion-substituted ceria. In this report, we present the relationship between the OSC and structural changes induced by the dopant ion in CeO2. Transition metal and noble metal ion substitution in ceria greatly enhances the reducibility of Ce1-xMxO2-delta (M = Mn, Fe, Co, Ni, Cu, Pd, Pt, Ru), whereas rare-earth-ion-substituted Ce(1-x)A(x)O(2-delta) (A = La, Y) have very little effect in improving the OSC. Our simulated optimized structure shows deviation in cation oxygen bond length from ideal bond length of 2.34 angstrom (for CeO2). For example, our theoretical calculation for Ce28Mn4O62 structure shows that Mn-O bonds are in 4 + 2 coordination with average bond lengths of 2.0 and 3.06 angstrom respectively. Although the four short Mn-O bond lengths spans the bond distance region of Mn2O3, the other two Mn-O bonds are moved to longer distances. The dopant transition and noble metal ions also affects Ce coordination shell and results in the formation of longer Ce-O bonds as well. Thus longer cation oxygen bonds for both dopant and host ions results in enhanced synergistic reduction of the solid solution. With Pd ion substitution in Ce1-xMxO2-delta (M = Mn, Fe, Co, Ni, Cu) further enhancement in OSC is observed in H-2-TPR. This effect is reflected in our model calculations by the presence of still longer bonds compared to the model without Pd ion doping. The synergistic effect is therefore due to enhanced reducibility of both dopant and host ion induced due to structural distortion of fluorite lattice in presence of dopant ion. For RE ions (RE = Y, La), our calculations show very little deviation of bonds lengths from ideal fluorite structure. The absence of longer Y-O/La-O and Ce-O bonds make the structure much less susceptible to reduction.
Resumo:
The incidence of type 2 diabetes has increased rapidly worldwide. Obesity is one of the most important modifiable risk factors of type 2 diabetes: weight gain increases and weight loss decreases the risk. However, the effects of weight fluctuation are unclear. Reactive oxygen species are presumably part of the complicated mechanism for the development of insulin resistance and beta-cell destruction in the pancreas. The association of antioxidants with the risk of incident type 2 diabetes has been studied in longitudinal prospective human studies, but so far there is no clear conclusion about protective effect of dietary or of supplementary antioxidants on diabetes risk. The present study examined 1) weight change and fluctuation as risk factors for incident type 2 diabetes; 2) the association of baseline serum alpha-tocopherol or beta-carotene concentration and dietary intake of antioxidants with the risk of type 2 diabetes; 3) the effect of supplementation with alpha-tocopherol or beta-carotene on the risk of incident type 2 diabetes; and on macrovascular complications and mortality among type 2 diabetics. This investigation was part of the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study, a randomized, double-blind, placebo-controlled prevention trial, which has undertaken to examine the effect of alpha-tocopherol and beta-carotene supplementation on the development of lung cancer, other cancers, and cardiovascular diseases in male smokers aged 50-69 years at baseline. Participants were assigned to receive either 50 mg alpha-tocopherol, 20mg beta-carotene, both, or placebo daily in a 2 x 2 factorial design experiment during 1985-1993. Cases of incident diabetes were identified through a nationwide register of drug reimbursements of the Social Insurance Institution. At baseline 1700 men had a history of diabetes. Among those (n = 27 379) with no diabetes at baseline 305 new cases of type 2 diabetes were recognized during the intervention period and 705 during the whole follow-up to 12.5 years. Weight gain and weight fluctuation measured over a three year period were independent risk factors for subsequent incident type 2 diabetes. Relative risk (RR) was 1.77 (95% confidence interval [CI] 1.44-2.17) for weight gain of at least 4 kg compared to those with a weight change of less than 4 kg. The RR in the highest weight fluctuation quintile compared to the lowest was 1.64 (95% CI 1.24-2.17). Dietary tocopherols and tocotrienols as well as dietary carotenoids, flavonols, flavones and vitamin C were not associated with the risk of type 2 diabetes. Baseline serum alpha-tocopherol and beta-carotene concentrations were not associated with the risk of incident diabetes. Neither alpha-tocopherol nor beta-carotene supplementation affected the risk of diabetes. The relative risks for participants who received alpha-tocopherol compared with nonrecipients and for participants who received beta-carotene compared with nonrecipients were 0.92 (95% CI 0.79-1.07) and 0.99 (95% CI 0.85-1.15), respectively. Furthermore, alpha-tocopherol or beta-carotene supplementation did not affect the risk of macrovascular complications or mortality of diabetic subjects during the 19 years follow-up time. In conclusion, in this study of older middle-aged male smokers, weight gain and weight fluctuation were independent risk factors for type 2 diabetes. Intake of antioxidants or serum alpha-tocopherol or beta-carotene concentrations were not associated with the risk of type 2 diabetes. Supplementation with of alpha-tocopherol or beta-carotene did not prevent type 2 diabetes. Neither did they prevent macrovascular complications, or mortality among diabetic subjects.
Resumo:
Hemin catalyses the oxidation of dithiothreitol. One mole of oxygen is consumed for every 2 moles of dithiothreitol oxidized and the product is shown by spectral studies to be the intramolecular disulphide. The reaction shows a specificity for dithiol and for free heme moieties. Hemin molecules exhibit cooperativity in oxygen reduction. Oxygen radicals do not seem to be involved. H2O2 is not required for this oxidation of dithiothreitol and does not appear to be an intermediate in the reduction of O2 to H2O. However, an independent minor reaction involving a 2-electron transfer with the formation of H2O2 also occurs. These studies on the hemin-catalyzed oxidation of dithiothreitol provide a chemical model for a direct 4-electron reduction of O2 to H2O.
Resumo:
The infra-red spectra of a large number of ternary Cu(II) oxides with at least a quasi square-planar coordination of oxygen around the copper ions have been studied. The frequency of the bands with the highest frequency,v max, is found to correlate extremely well with the shortest Cu–O distance.v max increases at an impressive rate of sim20 cm–1 per 0.01 Å when the Cu–O distance becomes less than 1.97 Å, which is the Cu2+–O2– distance in square-planar CuO4 complexes as obtained from empirical ionic radii considerations. The marked sensitivity may be used as a ldquotitrationrdquo procedure not only to assign bands but also to obtain diagnostic information about local coordination in compounds derived, for example, from the YBa2Cu3O7–d structure such as LaCaBaCu3O7–d . The only example where this correlation fails is in the two-layer non-superconducting oxides derived from La2(Ca, Sr)Cu2O6. The significance of this result is discussed. The marked dependence of frequency on the bond-distance is qualitatively examined in terms of an increased electron-phonon coupling to account for the observed tendency of the superconducting transition temperature to go through a maximum as the average basal plane Cu–O distance is decreased.
Resumo:
A cDNA clone has been isolated from a chicken liver library prepared against messenger RNA isolated after chronic estradiol-17β treatment. The clone, pP-450 IA - 61, has an insert of 900nt and the sequence shows high homology to CYPIA2 subfamily from four other species. A single injection of estradiol-17β to immature chicken results in a striking induction of mRNA hybridizing to labeled pP-450IA - 61. The probe also hybridizes to mRNA induced by 3 — methylcholanthrene in chicken. These results offer direct proof for the similarity in the mode of action at the transcriptional level of polyaromatic hydrocarbons and estrogenic compounds.