994 resultados para 1599-1660
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Rhizoctonia solani AG-1 IA causes leaf blight on soybean and rice. Despite the fact that R. solani AG-1 IA is a major pathogen affecting soybean and rice in Brazil and elsewhere in the world, little information is available on its genetic diversity and evolution. This study was an attempt to reveal the origin, and the patterns of movement and amplification of epidemiologically significant genotypes of R. solani AG-1 IA from soybean and rice in Brazil. For inferring intraspecific evolution of R. solani AG-1 IA sampled from soybean and rice, networks of ITS-5.8S rDNA sequencing haplotypes were built using the statistical parsimony algorithm from Clement et al. (2000) Molecular Ecology 9: 1657-1660. Higher haplotype diversity (Nei M 1987, Molecular Evolutionary Genetics Columbia University Press, New york: 512p.) was observed for the Brazilian soybean sample of R. solani AG-1 IA (0.827) in comparison with the rest of the world sample (0.431). Within the south-central American clade (3-2), four haplotypes of R. solani AG-1 IA from Mato Grosso, one from Tocantins, one from Maranhao, and one from Cuba occupied the tips of the network, indicating recent origin. The putative ancestral haplotypes had probably originated either from Mato Grosso or Maranhao States. While 16 distinct haplotypes were found in a sample of 32 soybean isolates of the pathogen, the entire rice sample (n=20) was represented by a single haplotype (haplotype 5), with a worldwide distribution. The results from nested-cladistic analysis indicated restricted gene flow with isolation by distance (or restricted dispersal by distance in nonsexual species) for the south-central American clade (3-2), mainly composed by soybean haplotypes.
On non-ideal simple portal frame structural model: Experimental results under a non-ideal excitation
Resumo:
We present measurements of the non-linear oscillations of a portal frame foundation for a non-ideal motor. We consider a three-time redundant structure with two columns, clamped in their bases and a horizontal beam. An electrical unbalanced motor is mounted at mid span of the beam. Two non-linear phenomena are studied: a) mode saturation and energy transfer between modes; b) interaction between high amplitude motions of the structure and the rotation regime of a real limited power motor. The dynamic characteristics of the structure were chosen to have one-to-two internal resonance between the anti-symmetrical mode (sway motions) and the first symmetrical mode natural frequencies. As the excitation frequency reaches near resonance conditions with the 2nd natural frequency, the amplitude of this mode grows up to a certain level and then it saturates. The surplus energy pumped into the system is transferred to the sway mode, which experiences a sudden increase in its amplitude. Energy is transformed from low amplitude high frequency motion into high amplitude low frequency motion. Such a transformation is potentially dangerous.We consider the fact that real motors, such as the one used in this study, have limited power output. In this case, this energy source is said to be non-ideal, in contrast to the ideal source whose amplitude and frequency are independent of the motion of the structure. Our experimental research detected the Sommerfeld Effect: as the motor accelerates to reach near resonant conditions, a considerable part of its output energy is consumed to generate large amplitude motions of the structure and not to increase its own angular speed. For certain parameters of the system, the motor can get stuck at resonance not having enough power to reach higher rotation regimes. If some more power is available, jump phenomena may occur from near resonance to considerably higher motor speed regimes, no stable motions being possible between these two.
Resumo:
The Fitzhugh-Nagumo (fn) mathematical model characterizes the action potential of the membrane. The dynamics of the Fitzhugh-Nagumo model have been extensively studied both with a view to their biological implications and as a test bed for numerical methods, which can be applied to more complex models. This paper deals with the dynamics in the (FH) model. Here, the dynamics are analyzed, qualitatively, through the stability diagrams to the action potential of the membrane. Furthermore, we also analyze quantitatively the problem through the evaluation of Floquet multipliers. Finally, the nonlinear periodic problem is controlled, based on the Chebyshev polynomial expansion, the Picard iterative method and on Lyapunov-Floquet transformation (L-F transformation).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate different dietary electrolyte balance (DEB) on the blood biochemical parameters, nitrogen balances and crude metabolizable energy of swine in the initial phase. Sixteen barrows were used, averaging 27.95 kg of initial weight, allotted individually in metabolic cages in a randomized blocks design with four treatments (DEB of 160, 208, 257 and 305 mEq/kg) and 4 replicates. The blood biochemical parameters analyzed were chloride, potassium, sodium and urea in blood. Urine pH was also evaluated, and the parameters evaluated in nitrogen (N) balance were N intake, fecal N, N excreted in urine, absorbed N, N retention, retained N/absorbed N and total excretion of N. The gross energy digestibility and metabolizibility coefficients were determined, and the respectives values of digestible and metabolizable energy. The values of urinary pH increased (P < 0.01) linearly with increasing levels of DEB, ranging from 6.90 to 8.03. The results for chloride, potassium and nitrogen balances of variables and gross energy were similar (P > 0.05) between the evaluated DEB. A linear increase (P < 0.01) was also observed for sodium concentrations in blood serum due to the increase of DEB, with values of 2.91, 3.03, 3.27 and 3.18 g/l, respectively for the different treatments. Urea levels in blood serum increased linearly (P < 0.01), with values of 26.21, 28.64, 34.32 and 32.89 mg/dl. It was concluded that increasing the dietary electrolyte balance, from 160 to 305 mEq/kg resulted in higher concentrations of urea and sodium in blood serum, and higher pH values in the urine of swine in the initial phase.
Resumo:
Xylella fastidiosa associated to plum leaf scald is reported to belong to the same group of the strain that causes the phony disease of peach. Plants of plum cultivars Santa Rosa and Harry Pickstone and peach cultivar Flordasun, grafted on peach rootstock, were inoculated by using buds collected from plum plants severely infected with X. fastidiosa. Peach plants did not develop symptoms of phony disease, after four years in the greenhouse. In contrast, plum plants from both cultivars inoculated either in the rootstock or in the canopy developed leaf scald symptoms. DAS-ELISA tests with antibody against X. fastidiosa and isolation on BCYE medium indicated the presence of the bacterium in plum tissues. These tests were negative for Flordasun peach for both stem and root samples.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A simple algorithm for computing the propagator for higher derivative gravity theories based on the Barnes-Rivers operators is presented. The prescription is used, among other things, to obtain the propagator for quadratic gravity in an unconventional gauge. We also find the propagator for both gravity and quadratic gravity in an interesting gauge recently baptized the Einstein gauge [Hitzer and Dehnen, Int. J. Theor. Phys. 36 (1997), 559].
Resumo:
We present a simple mathematical model of a wind turbine supporting tower. Here, the wind excitation is considered to be a non-ideal power source. In such a consideration, there is interaction between the energy supply and the motion of the supporting structure. If power is not enough, the rotation of the generator may get stuck at a resonance frequency of the structure. This is a manifestation of the so-called Sommerfeld Effect. In this model, at first, only two degrees of freedom are considered, the horizontal motion of the upper tip of the tower, in the transverse direction to the wind, and the generator rotation. Next, we add another degree of freedom, the motion of a free rolling mass inside a chamber. Its impact with the walls of the chamber provides control of both the amplitude of the tower vibration and the width of the band of frequencies in which the Sommerfeld effect occur. Some numerical simulations are performed using the equations of motion of the models obtained via a Lagrangian approach.
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía