875 resultados para 020406 Surfaces and Structural Properties of Condensed Matter
Resumo:
Dulce de leche (DL), a dairy dessert highly appreciated in Brazil, is a concentrated product containing about 70% m/m of total solids. Thermophysical and rheological properties of two industrial Brazilian Dulce de leche formulations (classic Dulce de leche and Dulce de leche added with coconut flakes 1.5% m/m) were determined at temperatures comprised between 28.4 and 76.4 °C. In general, no significant differences (p < 0.05) were observed in the presence of coconut flakes in the two formulations. Heat capacity varied from 2633.2 to 3101.8 J/kg.°C; thermal conductivity from 0.383 to 0.452 W/m.°C; specific mass from 1350.7 to 1310.7 kg/m³; and, thermal diffusivity from (1.082 × 10-7 to 1.130 × 10-7) m²/s. The Bingham model was used to properly describe the non-Newtonian behavior of both formulations, with yielding stress values varying from 27.3 to 17.6 Pa and plastic viscosity from 19.9 to 5.9 Pa.s.
Resumo:
Gelatin was extracted from the skin of tilapia (Oreochromis urolepis hornorum) and characterized according to its physical and chemical properties. It had pH 4.66, which is slightly higher than the values reported for gelatins processed by acid solubilization. In general, the ionic content was low, and the average yield of the process was 5.10 g/100 g. The proximal composition of the gelatin was similar to that of the commercial gelatins, with slightly higher moisture content. The tilapia skin gelatin had whitish-yellow color and average turbidity of 67 NTU.
Resumo:
Araça belongs to the Myrtaceae family and is popularly known as araçá-comum, araçá-azedo, or araçá-do-campo. Frozen fruit pulp is of great importance for the food industry, which can produce it at the time of harvest, store it, and use it according to the demand of the consumer market and/or as an ingredient in the formulation of products such as yogurt, candies, and ice creams among others. The aim of this study was to evaluate the physical, chemical, and microbiological stability of frozen araça pulp during 12 months of frozen storage. It was observed that the levels of moisture (90.55-88.75%), ash (0.34-0.26%) total soluble sugars (7.11-6.62%), sucrose (3.55-1.39%), soluble pectin (0.24-0.23%), total pectin (0.5-0.46%), pH (3.82-2.31%), organic acids (698.12-122.25 µg.g-1 citric acid), and phenolic compounds (6.22-0.00 mg GAE.100 g-1) decreased during storage, whereas the levels of protein (0.61-0.83%), lipids (0.14-0.38%), total carbohydrates (8.36-9.78%), calorific value (37.14-45.86 kcal.100 g-1), reducing sugars (3.51-5.21%), soluble solids (5.17-6.0%), total antioxidant capacity (6.89-35.13%), and color parameters (L*49.75-50.67; a*0.79-1.82 and b*22.5-25.19) increased over the one-year storage period. According to the chemical and microbiological parameters assessed, the product can be stored for 12 months without loss of quality with addition of citric acid as a preservative.
Resumo:
Calcium chloride is widely used in industries as a firming agent, and also to extend shelf-life of vegetables. The aim of this study was to determine, the effect of different doses of calcium chloride on biochemical and color properties of fresh-cut green bean. Fresh-cut green beans were dipped for 90 seconds in 0.5%, 1%, 2% and 3% solution of calcium chloride at 25°C. The fresh-cut green bean samples were packaged in polystyrene foam dishes, wrapped with stretch film and stored in a cold room at 5±1°C temperature and 85-90% RH. Calcium chloride treatments did not retain the green color of samples. Whiteness index, browning index and total color difference (ΔE) values of CaCl2 treated samples were high. Saturation index and hue angle were low compared to the control, especially at higher doses of CaCl2. Polyphenol oxidase (PPO) enzyme activity in samples treated with CaCl2 at 3% doses, was low at the 7th days of storage than with other treatments. Fructose and sucrose content of samples increased in all treatment groups whereas glucose level decreased during the first 4th days of storage.
Resumo:
Rice, the seed of Oryza species, is the major cereal crop in most of the developing countries. Nearly 95% of global rice production is done in Asian countries, and about half of the world’s population consumes it. Some speciality rices are not commonly consumed. Colored rice is one of such variety. In these varieties, high amounts of anthocyanin pigment are deposited in the rice coat to form its black (also known as purple), brown and red colors. Minimum studies are there to explain the properties of these rice varieties of Thailand. Thus, the current study was aimed to assess the physicochemical and antioxidative properties of three rice varieties (Chiang Mai Black rice, Mali Red rice and Suphanburi-1 Brown rice) of different cultivars of northern Thailand. Rice bran extracts of these three cultivars were prepared with different solvents (polar and non-polar) for the evaluation of total phytochemical content and anti-oxidant free-radical-scavenging properties. Chiang Mai Black rice contained higher concentration of phenolic acid, flavonoids, and anthocyanins (Cyanidin 3-glucoside, peonidin 3-glucoside, cyanidin chloride). Chiang Mai Black rice is richer in free-radical-scavenging compounds and activities than the other tested varieties. Polar extractions of rice bran are high in anti-oxidative compounds and activities than non-polar extractions.
Resumo:
Pearl millet flour was utilized in kibbeh formulations instead of whole-wheat flour. Physicochemical properties, oxidation stability and sensorial characteristics of control kibbeh made with whole-wheat flour (CT) were compared with kibbehs prepared with millet flour (roasted or wet) and stored for 90 days (–18 °C). Kibbeh prepared with millet flour presented good oxidation stability (TBARS concentration). Baked kibbehs (with roasted millet flour) presented good acceptability and kibbeh samples did not differ significantly (p > 0.05) from the whole-wheat flour sample, when global appearance, texture and flavor were evaluated. Millet flour could be a suitable ingredient for kibbeh formulations, maintaining their nutritional value and sensorial quality in addition to being a gluten-free product.
Resumo:
AbstractThe current study was employed to assess the influence of the different extraction methods on total tocols, γ-oryzanol content, and antioxidant properties of Chiang Mai Black rice, Mali Red rice, and Suphanburi-1 Brown rice bran oil. Rice bran oil (RBO) was extracted by Hexane, Hot pressed, Cold pressed, and Supercritical Fluid Extraction (SFe) methods. High yield of RBO was extracted by hexane and SFe methods. Total and subgroups of tocols, and γ-oryzanol content were determined by HPLC. The hexane extracted sample accounts for high content of γ-oryzanol and tocols. Besides, all of RBO extracts contain a significantly high amount of γ-tocotrienol. In vitro antioxidant assay results indicated that superior quality of oil was recovered by hexane extraction. The temperature in the extraction process also affects the value of the oil. Superior quality of oil was recovered by hexane extraction, in terms of phytochemical contents and antioxidant properties compared to other tested extraction methods. Further, thorough study of factors compromising the quality and quantity of RBO recovery is required for the development of enhanced functional foods and other related products.
Resumo:
AbstractThe incorporation of fiber into products consumed every day by the general population is important and viable. The aim of the present work was to evaluate the impact of incorporating orange juice industry dietary fiber byproducts in fettuccini of fresh pasta. Three different fiber concentrations were added to fresh pastas (25 g/kg, 50 g/kg and 75 g/kg). The results showed a significant increase in solid loss content when the incorporation of orange fiber was greater than 50 g/kg. This difference did not occur regarding weight increase values and color parameters. The pasta with 75 g/kg orange fiber can be considered a “high fiber” product, with the total dietary fiber content of the pasta increasing by 99% compared to control pasta. The carotenoid and phenolic contents of pasta increased significantly with the incorporation of fiber at 75 g/kg, but only the pasta formulation with 25 g/kg of orange fiber did not differ from control pasta in relation to all of the sensory attributes and presented an acceptance greater than 75%. The addition of orange fiber byproducts to pastas is an interesting alternative because fiber has a high nutritional value and an abundance of antioxidants.
Resumo:
Abstract Grape pomace, which is derived from the skin and seeds, is the residue from the production of grape juice and wine. It corresponds to up to 20% of the total volume and it contains a high level of dietary fibers and bioactive compounds. In the Brazilian market, there is no product containing grape pomace as a replacement for conventional wheat flour. Thus, this study aimed to assess the effects of whole-wheat flour and organic Bordeaux grape pomace (Vitis labrusca L.) on the sensory, physicochemical and functional properties of cookies using response surface methodology (RSM). The regression models indicated that the addition of whole-wheat and organic grape pomace decreased (p < 0.0001) the water activity and significantly increased the content of fibers, hardness, brittleness, antioxidant activity and total phenolic content of the cookies. The RSM models presented suitable R2 and R2adj values (> 65% of explained data variability), except for brittleness. The sensory evaluation results revealed that no significant differences (p > 0.05) were observed for the cookie samples, implying that the addition of grape pomace and whole-wheat flour did not negatively affect the preference of cookies.
Resumo:
Abstract In this study the effects of zein film coating along with benzoic acid on the quality of sliced pumpkin samples, which were packaged with different techniques were investigated. The samples were allocated into different groups and were treated with different processes. Following processing, the samples were stored at +4 °C for twenty days. Physicochemical and microbiological analyses were carried out on the samples once every five days during the storage period. According to color analysis, the L* value was observed to have significantly decreased in the processed and packaged samples in comparison with the control group. Besides, a* and b* values increased in all groups. It was determined that zein film alone did not exhibit the expected effectiveness against moisture loss in the samples. According to the results of microbiological analysis, a final decrease at approximately 1.00 log level was determined in total count of mesophilic aerobic bacteria (TMAB) in the group which was vacuum packaged in PVDC with zein coating when compared with the initial TMAB. Furthermore, no molding occurred in zein-coated group on the last day of the storage period, while massive mold growth was noted in the group which was packaged without any pretreatment procedure.
Resumo:
Abstract The storage susceptibility of Bambara groundnut (B. G.) (Voandzeia Subterranean (L.) Thouars) to Callosobruchus maculatus and chemical and functional properties of 11 varieties form Far-North of Cameroon were investigate using standard analytical methods. Storage susceptibility shown that, after five months within treatment, C. maculatus destroy 10 to 50% of grains. The chemical characteristics of none attack grains of 11 varieties were range to 18.64 at 21.08%, 6.85 at 7.44%, 49.75 at 52.68% and to 6.05 at 7.55% respectively for protein, fat, starch and free carbohydrate. These chemical characteristics significantly (p < 0.05) decreases form attacks varieties. For the functional parameters, the none attacks grains was range of 130 at 135%, 19.15 at 20.91%, 18.20 at 21.13%, 2.76 at 3.21% and of 8.54 at 10.14% respectively for water capacity absorption, solubility index, gel length, ash and humidity. The results of this study indicated that storage susceptibility, chemical and functional properties of B. G. be dependant to the varieties.
Resumo:
In this thesis, bacteriorhodopsin (BR) photosensor’s optical and electrical properties were studied. The BR sensor consisted of a dry film with BR in polyvinyl alcohol and covered with transparent conductors. In the experiments the BR photocycle was started with two lasers. The characteristics of the BR sensor were measured in two ways. The first approach was theoretical and it required knowing the laser parameters. The second way required assembling a measurement setup for the optical response measurements. However, no measurable results were obtained due to low laser power. The photoelectric response was measured in the experiments with two laser systems and the amplifier was tested. In the experiment with a Cavitar laser, the photoelectric response was obtained. In the experiment with FemtoFiber Pro laser, the photoelectric response was not measured. The expected amplitude of the response was obtained. The experimental data was analyzed and possible solutions for reducing the interference were given.
Resumo:
Polarized reflectance measurements of the quasi I-D charge-transfer salt (TMTSFh CI04 were carried out using a Martin-Puplett-type polarizing interferometer and a 3He refrigerator cryostat, at several temperatures between 0.45 K and 26 K, in the far infrared, in the 10 to 70 cm- 1 frequency range. Bis-tetramethyl-tetraselena-fulvalene perchlorate crystals, grown electrochemically and supplied by K. Behnia, of dimensions 2 to 4 by 0.4 by 0.2 mm, were assembled on a flat surface to form a mosaic of 1.5 by 3 mm. The needle shaped crystals were positioned parallel to each other along their long axis, which is the stacking direction of the planar TMTSF cations, exposing the ab plane face (parallel to which the sheets of CI04 anions are positioned). Reflectance measurements were performed with radiation polarized along the stacking direction in the sample. Measurements were carried out following either a fast (15-20 K per minute) or slow (0.1 K per minute) cooling of the sample. Slow cooling permits the anions to order near 24 K, and the sample is expected to be superconducting below 1.2 K, while fast cooling yields an insulating state at low temperatures. Upon the slow cooling the reflectance shows dependence with temperature and exhibits the 28 cm- 1 feature reported previously [1]. Thermoreflectance for both the 'slow' and 'fast' cooling of the sample calculated relative to the 26 K reflectance data indicates that the reflectance is temperature dependent, for the slow cooling case only. A low frequency edge in the absolute reflectance is assigned an electronic origin given its strong temperature dependence in the relaxed state. We attribute the peak in the absolute reflectance near 30 cm-1 to a phonon coupled to the electronic background. Both the low frequency edge and the 30 cm-1 feature are noted te shift towards higher frequcncy, upon cntering the superconducting state, by an amount of the order of the expected superconducting energy gap. Kramers-Kronig analysis was carried out to determine the optical conductivity for the slowly cooled sample from the measured reflectance. In order to do so the low frequency data was extrapolated to zero frequency using a Hagen-Ru bens behaviour, and the high frequency data was extended with the data of Cao et al. [2], and Kikuchi et al. [3]. The real part of the optical conductivity exhibits an asymmetric peak at 35 cm-1, and its background at lower frequencies seems to be losing spectral weight with lowering of the temperature, leading us to presume that a narrow peak is forming at even lower frequencies.
Resumo:
Interest in mixed-valent perovskite manganese oxides of La\-xAxMnO^ (v4-divalent alkaline earth Ca, Sr or Ba), whose unusual properties were discovered nearly a half century ago, has recently been revived. The discovery of the colossal magnetoresistance and pressure effects introduced new questions concerning the complex interplay between lattice structure, magnetism and transport in doped perovskite manganites. In this study, we report our experimental investigations of pressure and magnetic field dependencies of La-i/sCai/sMnOs (LCMO) epitaxial films with various thickness on SrTiO$ substrate. An analysis of film thickness dependency of the resistivity of LCMO epitaxial films under pressure and magnetic field has been performed by taking into account substrate contributions. This verifies the correlation of lattice distortion with magnetic and transport properties. Strong dependencies of Mn — O — Mn bond bending and Mn — O bond stretching with pressure as well as Mn spin alignment with magnetic field, and the lattice distortion induced by the substrate are discussed.
Resumo:
We study the phonon dispersion, cohesive and thermal properties of raxe gas solids Ne, Ar, Kr, and Xe, using a variety of potentials obtained from different approaches; such as, fitting to crystal properties, purely ab initio calculations for molecules and dimers or ab initio calculations for solid crystalline phase, a combination of ab initio calculations and fitting to either gas phase data or sohd state properties. We explore whether potentials derived with a certain approaxih have any obvious benefit over the others in reproducing the solid state properties. In particular, we study phonon dispersion, isothermal ajid adiabatic bulk moduli, thermal expansion, and elastic (shear) constants as a function of temperatiue. Anharmonic effects on thermal expansion, specific heat, and bulk moduli have been studied using A^ perturbation theory in the high temperature limit using the neaxest-neighbor central force (nncf) model as developed by Shukla and MacDonald [4]. In our study, we find that potentials based on fitting to the crystal properties have some advantage, particularly for Kr and Xe, in terms of reproducing the thermodynamic properties over an extended range of temperatiures, but agreement with the phonon frequencies with the measured values is not guaranteed. For the lighter element Ne, the LJ potential which is based on fitting to the gas phase data produces best results for the thermodynamic properties; however, the Eggenberger potential for Ne, where the potential is based on combining ab initio quantum chemical calculations and molecular dynamics simulations, produces results that have better agreement with the measured dispersion, and elastic (shear) values. For At, the Morse-type potential, which is based on M0ller-Plesset perturbation theory to fourth order (MP4) ab initio calculations, yields the best results for the thermodynamic properties, elastic (shear) constants, and the phonon dispersion curves.