913 resultados para 004 - Informatik (Data processing Computer science)
Resumo:
Supervisory systems evolution makes the obtaining of significant information from processes more important in the way that the supervision systems' particular tasks are simplified. So, having signal treatment tools capable of obtaining elaborate information from the process data is important. In this paper, a tool that obtains qualitative data about the trends and oscillation of signals is presented. An application of this tool is presented as well. In this case, the tool, implemented in a computer-aided control systems design (CACSD) environment, is used in order to give to an expert system for fault detection in a laboratory plant
Resumo:
The main objective of this paper aims at developing a methodology that takes into account the human factor extracted from the data base used by the recommender systems, and which allow to resolve the specific problems of prediction and recommendation. In this work, we propose to extract the user's human values scale from the data base of the users, to improve their suitability in open environments, such as the recommender systems. For this purpose, the methodology is applied with the data of the user after interacting with the system. The methodology is exemplified with a case study
Resumo:
Reading group on diverse topics of interest for the Information: Signals, Images, Systems (ISIS) Research Group of the School of Electronics and Computer Science, University of Southampton.
Resumo:
A project to identify metrics for assessing the quality of open data based on the needs of small voluntary sector organisations in the UK and India. For this project we assumed the purpose of open data metrics is to determine the value of a group of open datasets to a defined community of users. We adopted a much more user-centred approach than most open data research using small structured workshops to identify users’ key problems and then working from those problems to understand how open data can help address them and the key attributes of the data if it is to be successful. We then piloted different metrics that might be used to measure the presence of those attributes. The result was six metrics that we assessed for validity, reliability, discrimination, transferability and comparability. This user-centred approach to open data research highlighted some fundamental issues with expanding the use of open data from its enthusiast base.
Resumo:
As our world becomes increasingly interconnected, diseases can spread at a faster and faster rate. Recent years have seen large-scale influenza, cholera and ebola outbreaks and failing to react in a timely manner to outbreaks leads to a larger spread and longer persistence of the outbreak. Furthermore, diseases like malaria, polio and dengue fever have been eliminated in some parts of the world but continue to put a substantial burden on countries in which these diseases are still endemic. To reduce the disease burden and eventually move towards countrywide elimination of diseases such as malaria, understanding human mobility is crucial for both planning interventions as well as estimation of the prevalence of the disease. In this talk, I will discuss how various data sources can be used to estimate human movements, population distributions and disease prevalence as well as the relevance of this information for intervention planning. Particularly anonymised mobile phone data has been shown to be a valuable source of information for countries with unreliable population density and migration data and I will present several studies where mobile phone data has been used to derive these measures.
Resumo:
This talk will present an overview of the ongoing ERCIM project SMARTDOCS (SeMAntically-cReaTed DOCuments) which aims at automatically generating webpages from RDF data. It will particularly focus on the current issues and the investigated solutions in the different modules of the project, which are related to document planning, natural language generation and multimedia perspectives. The second part of the talk will be dedicated to the KODA annotation system, which is a knowledge-base-agnostic annotator designed to provide the RDF annotations required in the document generation process.
Resumo:
Abstract: Big Data has been characterised as a great economic opportunity and a massive threat to privacy. Both may be correct: the same technology can indeed be used in ways that are highly beneficial and those that are ethically intolerable, maybe even simultaneously. Using examples of how Big Data might be used in education - normally referred to as "learning analytics" - the seminar will discuss possible ethical and legal frameworks for Big Data, and how these might guide the development of technologies, processes and policies that can deliver the benefits of Big Data without the nightmares. Speaker Biography: Andrew Cormack is Chief Regulatory Adviser, Jisc Technologies. He joined the company in 1999 as head of the JANET-CERT and EuroCERT incident response teams. In his current role he concentrates on the security, policy and regulatory issues around the network and services that Janet provides to its customer universities and colleges. Previously he worked for Cardiff University running web and email services, and for NERC's Shipboard Computer Group. He has degrees in Mathematics, Humanities and Law.
Predicting sense of community and participation by applying machine learning to open government data
Resumo:
Community capacity is used to monitor socio-economic development. It is composed of a number of dimensions, which can be measured to understand the possible issues in the implementation of a policy or the outcome of a project targeting a community. Measuring community capacity dimensions is usually expensive and time consuming, requiring locally organised surveys. Therefore, we investigate a technique to estimate them by applying the Random Forests algorithm on secondary open government data. This research focuses on the prediction of measures for two dimensions: sense of community and participation. The most important variables for this prediction were determined. The variables included in the datasets used to train the predictive models complied with two criteria: nationwide availability; sufficiently fine-grained geographic breakdown, i.e. neighbourhood level. The models explained 77% of the sense of community measures and 63% of participation. Due to the low geographic detail of the outcome measures available, further research is required to apply the predictive models to a neighbourhood level. The variables that were found to be more determinant for prediction were only partially in agreement with the factors that, according to the social science literature consulted, are the most influential for sense of community and participation. This finding should be further investigated from a social science perspective, in order to be understood in depth.
Resumo:
Abstract Big data nowadays is a fashionable topic, independently of what people mean when they use this term. But being big is just a matter of volume, although there is no clear agreement in the size threshold. On the other hand, it is easy to capture large amounts of data using a brute force approach. So the real goal should not be big data but to ask ourselves, for a given problem, what is the right data and how much of it is needed. For some problems this would imply big data, but for the majority of the problems much less data will and is needed. In this talk we explore the trade-offs involved and the main problems that come with big data using the Web as case study: scalability, redundancy, bias, noise, spam, and privacy. Speaker Biography Ricardo Baeza-Yates Ricardo Baeza-Yates is VP of Research for Yahoo Labs leading teams in United States, Europe and Latin America since 2006 and based in Sunnyvale, California, since August 2014. During this time he has lead the labs in Barcelona and Santiago de Chile. Between 2008 and 2012 he also oversaw the Haifa lab. He is also part time Professor at the Dept. of Information and Communication Technologies of the Universitat Pompeu Fabra, in Barcelona, Spain. During 2005 he was an ICREA research professor at the same university. Until 2004 he was Professor and before founder and Director of the Center for Web Research at the Dept. of Computing Science of the University of Chile (in leave of absence until today). He obtained a Ph.D. in CS from the University of Waterloo, Canada, in 1989. Before he obtained two masters (M.Sc. CS & M.Eng. EE) and the electronics engineer degree from the University of Chile in Santiago. He is co-author of the best-seller Modern Information Retrieval textbook, published in 1999 by Addison-Wesley with a second enlarged edition in 2011, that won the ASIST 2012 Book of the Year award. He is also co-author of the 2nd edition of the Handbook of Algorithms and Data Structures, Addison-Wesley, 1991; and co-editor of Information Retrieval: Algorithms and Data Structures, Prentice-Hall, 1992, among more than 500 other publications. From 2002 to 2004 he was elected to the board of governors of the IEEE Computer Society and in 2012 he was elected for the ACM Council. He has received the Organization of American States award for young researchers in exact sciences (1993), the Graham Medal for innovation in computing given by the University of Waterloo to distinguished ex-alumni (2007), the CLEI Latin American distinction for contributions to CS in the region (2009), and the National Award of the Chilean Association of Engineers (2010), among other distinctions. In 2003 he was the first computer scientist to be elected to the Chilean Academy of Sciences and since 2010 is a founding member of the Chilean Academy of Engineering. In 2009 he was named ACM Fellow and in 2011 IEEE Fellow.
Resumo:
Las tecnologías de la información han empezado a ser un factor importante a tener en cuenta en cada uno de los procesos que se llevan a cabo en la cadena de suministro. Su implementación y correcto uso otorgan a las empresas ventajas que favorecen el desempeño operacional a lo largo de la cadena. El desarrollo y aplicación de software han contribuido a la integración de los diferentes miembros de la cadena, de tal forma que desde los proveedores hasta el cliente final, perciben beneficios en las variables de desempeño operacional y nivel de satisfacción respectivamente. Por otra parte es importante considerar que su implementación no siempre presenta resultados positivos, por el contrario dicho proceso de implementación puede verse afectado seriamente por barreras que impiden maximizar los beneficios que otorgan las TIC.
Resumo:
Objetivo Identificar la prevalencia de síntomas osteomusculares, por segmentos y los factores de riesgo asociados, en los trabajadores de una empresa de Geomática, en Colombia en el año 2014. Metodología Se llevó a cabo un estudio descriptivo de corte transversal con una población de 169 trabajadores, distribuidos en 2 grupos, el grupo de campo que desarrolla actividades de topografía y el grupo de oficina donde se realizan procesamiento de datos en Geomática y actividades administrativas. A cada trabajador se le aplicó el cuestionario ERGOPAR que interroga la exposición o factores de riesgo y la presencia de síntomas osteomusculares. Resultados: El personal de oficina presenta mayor frecuencia de síntomas osteomusculares en el cuello 72%, la región lumbar 55%, los codos 17,7%, las manos y muñecas 57.3%. Presentándose con mayor frecuencia en las mujeres los síntomas en cuello 80% y manos 64%, mientras que los mayores porcentajes en personal de campo se presentan en las piernas 21%, las rodillas 26% y pies 11,5%. Se encontró asociación significativa entre la sedestación durante más de cuatro horas, con dolor en cuello (p=0.02) y dolor en región lumbar (p=0.03); inclinar el cuello hacia delante durante más de cuatro horas, con dolor en el cuello (p=0.006); repetir cada pocos segundos la flexión de muñecas (p=001) y utilizar los dedos de manera intensiva por más de 4 horas (p=0.01) con dolor en manos y las variables jornada laboral y puesto de trabajo con dolor en pies. Conclusiones La prevalencia de síntomas osteomusculares en los trabajadores de la empresa estudiada es alta. Dado que se encontró asociación significativa con las variables sociodemográficas y laborales. La alta prevalencia de sintomatología puede ser explicada por la exposición a carga física laboral, por posturas de trabajo, por movimientos repetitivos y características propias de género.
Resumo:
Objetivo: Establecer la correlación entre condiciones de iluminación, ángulo visual, discriminación de contrastes y agudeza visual en la aparición de síntomas visuales en operarios de computador. Materiales y métodos: Estudio de corte transversal y correlación en muestra de 136 trabajadores administrativos de un “call center” perteneciente a una entidad de salud en la ciudad de Bogotá, utilizando un cuestionario con el que se evaluaron las variables sociodemográficas y ocupacionales; aplicando la escala de síntomas visión – computador (CVSS17), realizando evaluación médica y midiendo iluminación y distancia operario pantalla de computador y con los datos recolectados se realizó un análisis estadístico bivariado y se estableció la correlación entre las condiciones de iluminación, ángulo visual, discriminación de contrataste y agudeza visual; frente a la aparición de síntomas visuales asociados con el uso del computador. El análisis se llevó a cabo con medidas de tendencia central y dispersión y con el coeficiente de correlación paramétrico de Pearson o no-paramétrico de Spearman, previamente se evaluó la normalidad con la prueba de Shapiro-Wilk. Las pruebas estadísticas se evaluarán a un nivel de significancia del 5% (p<0.05). Resultados: El promedio de edad de los participantes en el estudio fue de 36,3 años con un rango entre los 22 y 57 años y en donde el género predominante fue el femenino con el 79,4%. Se encontraron síntomas visuales asociados al uso de pantalla de computador del 59,6%, siendo los más frecuentes la epifora (70,6%), fotofobia (67,6%) y ardor ocular (54,4%). Se reportó una correlación inversa significativa entre niveles de iluminación y manifestación de fotofobia (p=0.02; r= 0,262). Por otra parte no se encontró correlación significativa entre los síntomas referidos con ángulo de visión y agudeza visual y discriminación de contrastes. Conclusión: Las condiciones laborales de iluminación del grupo de estudio están relacionadas con la manifestación de fotofobia, Se encontró asociación entre síntomas visuales y variables sociodemográficas, específicamente con el género, fotofobia a pantalla, fatiga visual y fotofobia
Resumo:
The proposal presented in this thesis is to provide designers of knowledge based supervisory systems of dynamic systems with a framework to facilitate their tasks avoiding interface problems among tools, data flow and management. The approach is thought to be useful to both control and process engineers in assisting their tasks. The use of AI technologies to diagnose and perform control loops and, of course, assist process supervisory tasks such as fault detection and diagnose, are in the scope of this work. Special effort has been put in integration of tools for assisting expert supervisory systems design. With this aim the experience of Computer Aided Control Systems Design (CACSD) frameworks have been analysed and used to design a Computer Aided Supervisory Systems (CASSD) framework. In this sense, some basic facilities are required to be available in this proposed framework: ·
Resumo:
GODIVA2 is a dynamic website that provides visual access to several terabytes of physically distributed, four-dimensional environmental data. It allows users to explore large datasets interactively without the need to install new software or download and understand complex data. Through the use of open international standards, GODIVA2 maintains a high level of interoperability with third-party systems, allowing diverse datasets to be mutually compared. Scientists can use the system to search for features in large datasets and to diagnose the output from numerical simulations and data processing algorithms. Data providers around Europe have adopted GODIVA2 as an INSPIRE-compliant dynamic quick-view system for providing visual access to their data.