988 resultados para Ácido fenólico glicolipídico-1. (PGL1). Hanseníase neural pura (HNP)
Resumo:
This article investigates the relation between stimulus-evoked neural activity and cerebral hemodynamics. Specifically, the hypothesis is tested that hemodynamic responses can be modeled as a linear convolution of experimentally obtained measures of neural activity with a suitable hemodynamic impulse response function. To obtain a range of neural and hemodynamic responses, rat whisker pad was stimulated using brief (less than or equal to2 seconds) electrical stimuli consisting of single pulses (0.3 millisecond, 1.2 mA) combined both at different frequencies and in a paired-pulse design. Hemodynamic responses were measured using concurrent optical imaging spectroscopy and laser Doppler flowmetry, whereas neural responses were assessed through current source density analysis of multielectrode recordings from a single barrel. General linear modeling was used to deconvolve the hemodynamic impulse response to a single "neural event" from the hemodynamic and neural responses to stimulation. The model provided an excellent fit to the empirical data. The implications of these results for modeling schemes and for physiologic systems coupling neural and hemodynamic activity are discussed.
Resumo:
The past few years have seen major advances in the field of NSC (neural stem cell) research with increasing emphasis towards its application in cell-replacement therapy for neurological disorders. However, the clinical application of NSCs will remain largely unfeasible until a comprehensive understanding of the cellular and molecular mechanisms of NSC fate specification is achieved. With this understanding will come an increased possibility to exploit the potential of stem cells in order to manufacture transplantable NSCs able to provide a safe and effective therapy for previously untreatable neurological disorders. Since the pathology of each of these disorders is determined by the loss or damage of a specific neural cell population, it may be necessary to generate a range of NSCs able to replace specific neurons or glia rather than generating a generic NSC population. Currently, a diverse range of strategies is being investigated with this goal in mind. In this review, we focus on the relationship between NSC specification and differentiation and discuss how this information may be used to direct NSCs towards a particular fate.
Resumo:
Background: Animal research indicates that the neural substrates of emotion regulation may be persistently altered by early environmental exposures. If similar processes operate in human development then this is significant, as the capacity to regulate emotional states is fundamental to human adaptation. Methods: We utilised a 22-year longitudinal study to examine the influence of early infant attachment to the mother, a key marker of early experience, on neural regulation of emotional states in young adults. Infant attachment status was measured via objective assessment at 18-months, and the neural underpinnings of the active regulation of affect were studied using fMRI at age 22 years. Results: Infant attachment status at 18-months predicted neural responding during the regulation of positive affect 20-years later. Specifically, while attempting to up-regulate positive emotions, adults who had been insecurely versus securely attached as infants showed greater activation in prefrontal regions involved in cognitive control and reduced co-activation of prefrontal cortex and nucleus accumbens, consistent with relative inefficiency in the neural regulation of positive affect. Conclusions: Disturbances in the mother-infant relationship may persistently alter the neural circuitry of emotion regulation, with potential implications for adjustment in adulthood.
Resumo:
Reduced subjective experience of reward (anhedonia) is a key symptom of major depression. The anti-obesity drug and cannabinoid type 1 receptor (CB(1)) antagonist, rimonabant, is associated with significant rates of depression and anxiety in clinical use and was recently withdrawn from the market because of these adverse effects. Using a functional magnetic resonance imaging (fMRI) model of reward we hypothesized that rimonabant would impair reward processing. Twenty-two healthy participants were randomly allocated to receive rimonabant (20 mg), or placebo, for 7 d in a double-blind, parallel group design. We used fMRI to measure the neural response to rewarding (sight and/or flavour of chocolate) and aversive (sight of mouldy strawberries and/or an unpleasant strawberry taste) stimuli on the final day of drug treatment. Rimonabant reduced the neural response to chocolate stimuli in key reward areas such as the ventral striatum and the orbitofrontal cortex. Rimonabant also decreased neural responses to the aversive stimulus condition in the caudate nucleus and ventral striatum, but increased lateral orbitofrontal activations to the aversive sight and taste of strawberry condition. Our findings are the first to show that the anti-obesity drug rimonabant inhibits the neural processing of rewarding food stimuli in humans. This plausibly underlies its ability to promote weight loss, but may also indicate a mechanism for inducing anhedonia which could lead to the increased risk of depressive symptomatology seen in clinical use. fMRI may be a useful method of screening novel agents for unwanted effects on reward and associated clinical adverse reactions.
Resumo:
This paper considers variations of a neuron pool selection method known as Affordable Neural Network (AfNN). A saliency measure, based on the second derivative of the objective function is proposed to assess the ability of a trained AfNN to provide neuronal redundancy. The discrepancies between the various affordability variants are explained by correlating unique sub group selections with relevant saliency variations. Overall this study shows that the method in which neurons are selected from a pool is more relevant to how salient individual neurons are, than how often a particular neuron is used during training. The findings herein are relevant to not only providing an analogy to brain function but, also, in optimizing the way a neural network using the affordability method is trained.
Resumo:
Single-carrier (SC) block transmission with frequency-domain equalisation (FDE) offers a viable transmission technology for combating the adverse effects of long dispersive channels encountered in high-rate broadband wireless communication systems. However, for high bandwidthefficiency and high power-efficiency systems, the channel can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. For such nonlinear Hammerstein channels, the standard SC-FDE scheme no longer works. This paper advocates a complex-valued (CV) B-spline neural network based nonlinear SC-FDE scheme for Hammerstein channels. Specifically, We model the nonlinear HPA, which represents the CV static nonlinearity of the Hammerstein channel, by a CV B-spline neural network, and we develop two efficient alternating least squares schemes for estimating the parameters of the Hammerstein channel, including both the channel impulse response coefficients and the parameters of the CV B-spline model. We also use another CV B-spline neural network to model the inversion of the nonlinear HPA, and the parameters of this inverting B-spline model can easily be estimated using the standard least squares algorithm based on the pseudo training data obtained as a natural byproduct of the Hammerstein channel identification. Equalisation of the SC Hammerstein channel can then be accomplished by the usual one-tap linear equalisation in frequency domain as well as the inverse B-spline neural network model obtained in time domain. Extensive simulation results are included to demonstrate the effectiveness of our nonlinear SC-FDE scheme for Hammerstein channels.
Resumo:
This paper discusses ECG classification after parametrizing the ECG waveforms in the wavelet domain. The aim of the work is to develop an accurate classification algorithm that can be used to diagnose cardiac beat abnormalities detected using a mobile platform such as smart-phones. Continuous time recurrent neural network classifiers are considered for this task. Records from the European ST-T Database are decomposed in the wavelet domain using discrete wavelet transform (DWT) filter banks and the resulting DWT coefficients are filtered and used as inputs for training the neural network classifier. Advantages of the proposed methodology are the reduced memory requirement for the signals which is of relevance to mobile applications as well as an improvement in the ability of the neural network in its generalization ability due to the more parsimonious representation of the signal to its inputs.
Resumo:
Disturbances in the regulation of reward and aversion in the brain may underlie disorders such as obesity and eating disorders. We previously showed that the cannabis receptor subtype (CB1) inverse agonist rimonabant, an antiobesity drug withdrawn due to depressogenic side effects, diminished neural reward responses yet increased aversive responses (Horder et al., 2010). Unlike rimonabant, tetrahydrocannabivarin is a neutral CB1 receptor antagonist (Pertwee, 2005) and may therefore produce different modulations of the neural reward system. We hypothesized that tetrahydrocannabivarin would, unlike rimonabant, leave intact neural reward responses but augment aversive responses. Methods: We used a within-subject, double-blind design. Twenty healthy volunteers received a single dose of tetrahydrocannabivarin (10mg) and placebo in randomized order on 2 separate occasions. We measured the neural response to rewarding (sight and/or flavor of chocolate) and aversive stimuli (picture of moldy strawberries and/or a less pleasant strawberry taste) using functional magnetic resonance imaging. Volunteers rated pleasantness, intensity, and wanting for each stimulus. Results: There were no significant differences between groups in subjective ratings. However, tetrahydrocannabivarin increased responses to chocolate stimuli in the midbrain, anterior cingulate cortex, caudate, and putamen. Tetrahydrocannabivarin also increased responses to aversive stimuli in the amygdala, insula, mid orbitofrontal cortex, caudate, and putamen. Conclusions: Our findings are the first to show that treatment with the CB1 neutral antagonist tetrahydrocannabivarin increases neural responding to rewarding and aversive stimuli. This effect profile suggests therapeutic activity in obesity, perhaps with a lowered risk of depressive side effects. Keywords: reward, THCv, obesity, fMRI, cannabinoid
Resumo:
Neural stem cells are precursors of neurons and glial cells. During brain development, these cells proliferate, migrate and differentiate into specific lineages. Recently neural stem cells within the adult central nervous system were identified. Informations are now emerging about regulation of stem cell proliferation, migration and differentiation by numerous soluble factors such as chemokines and cytokines. However, the signal transduction mechanisms downstream of these factors are less clear. Here, we review potential evidences for a novel central role of the transcription factor nuclear factor kappa B (NF-kappaB) in these crucial signal transduction processes. NF-kappaB is an inducible transcription factor detected in neurons, glia and neural stem cells. NF-kappaB was discovered by David Baltimore's laboratory as a transcription factor in lymphocytes. NF-kappaB is involved in many biological processes such as inflammation and innate immunity, development, apoptosis and anti-apoptosis. It has been recently shown that members of the NF-kappaB family are widely expressed by neurons, glia and neural stem cells. In the nervous system, NF-kappaB plays a crucial role in neuronal plasticity, learning, memory consolidation, neuroprotection and neurodegeneration. Recent data suggest an important role of NF-kappaB on proliferation, migration and differentiation of neural stem cells. NF-kappaB is composed of three subunits: two DNA-binding and one inhibitory subunit. Activation of NF-kappaB takes place in the cytoplasm and results in degradation of the inhibitory subunit, thus enabling the nuclear import of the DNA-binding subunits. Within the nucleus, several target genes could be activated. In this review, we suggest a model explaining the multiple action of NF-kappaB on neural stem cells. Furthermore, we discuss the potential role of NF-kappaB within the so-called brain cancer stem cells.
Resumo:
BACKGROUND: Brain inflammation has been recognized as a complex phenomenon with numerous related aspects. In addition to the very well-described neurodegenerative effect of inflammation, several studies suggest that inflammatory signals exert a potentially positive influence on neural stem cell proliferation, migration and differentiation. Tumor necrosis factor alpha (TNF-alpha) is one of the best-characterized mediators of inflammation. To date, conclusions about the action of TNF on neural stem or progenitor cells (NSCs, NPCs) have been conflicting. TNF seems to activate NSC proliferation and to inhibit their differentiation into NPCs. The purpose of the present study was to analyze the molecular signal transduction mechanisms induced by TNF and resulting in NSC proliferation. RESULTS: Here we describe for the first time the TNF-mediated signal transduction cascade in neural stem cells (NSCs) that results in increased proliferation. Moreover, we demonstrate IKK-alpha/beta-dependent proliferation and markedly up-regulated cyclin D1 expression after TNF treatment. The significant increase in proliferation in TNF-treated cells was indicated by increased neurosphere volume, increased bromodeoxyuridin (BrdU) incorporation and a higher total cell number. Furthermore, TNF strongly activated nuclear factor-kappa B (NF-kappaB) as measured by reporter gene assays and by an activity-specific antibody. Proliferation of control and TNF-treated NSCs was strongly inhibited by expression of the NF-kappaB super-repressor IkappaB-AA1. Pharmacological blockade of IkappaB ubiquitin ligase activity led to comparable decreases in NF-kappaB activity and proliferation. In addition, IKK-beta gene product knock-down via siRNA led to diminished NF-kappaB activity, attenuated cyclin D1 expression and finally decreased proliferation. In contrast, TGFbeta-activated kinase 1 (TAK-1) is partially dispensable for TNF-mediated and endogenous proliferation. Understanding stem cell proliferation is crucial for future regenerative and anti-tumor medicine. CONCLUSION: TNF-mediated activation of IKK-beta resulted in activation of NF-kappaB and was followed by up-regulation of the bona-fide target gene cyclin D1. Activation of the canonical NF-kappaB pathway resulted in strongly increased proliferation of NSCs.
Resumo:
Neural stem cells (NSCs) are early precursors of neuronal and glial cells. NSCs are capable of generating identical progeny through virtually unlimited numbers of cell divisions (cell proliferation), producing daughter cells committed to differentiation. Nuclear factor kappa B (NF-kappaB) is an inducible, ubiquitous transcription factor also expressed in neurones, glia and neural stem cells. Recently, several pieces of evidence have been provided for a central role of NF-kappaB in NSC proliferation control. Here, we propose a novel mathematical model for NF-kappaB-driven proliferation of NSCs. We have been able to reconstruct the molecular pathway of activation and inactivation of NF-kappaB and its influence on cell proliferation by a system of nonlinear ordinary differential equations. Then we use a combination of analytical and numerical techniques to study the model dynamics. The results obtained are illustrated by computer simulations and are, in general, in accordance with biological findings reported by several independent laboratories. The model is able to both explain and predict experimental data. Understanding of proliferation mechanisms in NSCs may provide a novel outlook in both potential use in therapeutic approaches, and basic research as well.
Resumo:
Neural stem cells (NSCs) are potential sources for cell therapy of neurodegenerative diseases and for drug screening. Despite their potential benefits, ethical and practical considerations limit the application of NSCs derived from human embryonic stem cells (ES) or adult brain tissue. Thus, alternative sources are required to satisfy the criteria of ready accessibility, rapid expansion in chemically defined media and reliable induction to a neuronal fate. We isolated somatic stem cells from the human periodontium that were collected during minimally invasive periodontal access flap surgery as part of guided tissue regeneration therapy. These cells could be propagated as neurospheres in serum-free medium, which underscores their cranial neural crest cell origin. Culture in the presence of epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2) under serum-free conditions resulted in large numbers of nestin-positive/Sox-2-positive NSCs. These periodontium-derived (pd) NSCs are highly proliferative and migrate in response to chemokines that have been described as inducing NSC migration. We used immunocytochemical techniques and RT-PCR analysis to assess neural differentiation after treatment of the expanded cells with a novel induction medium. Adherence to substrate, growth factor deprivation, and retinoic acid treatment led to the acquisition of neuronal morphology and stable expression of markers of neuronal differentiation by more than 90% of the cells. Thus, our novel method might provide nearly limitless numbers of neuronal precursors from a readily accessible autologous adult human source, which could be used as a platform for further experimental studies and has potential therapeutic implications.
Resumo:
Several recent reports suggest that inflammatory signals play a decisive role in the self-renewal, migration and differentiation of multipotent neural stem cells (NSCs). NSCs are believed to be able to ameliorate the symptoms of several brain pathologies through proliferation, migration into the area of the lesion and either differentiation into the appropriate cell type or secretion of anti-inflammatory cytokines. Although NSCs have beneficial roles, current evidence indicates that brain tumours, such as astrogliomas or ependymomas are also caused by tumour-initiating cells with stem-like properties. However, little is known about the cellular and molecular processes potentially generating tumours from NSCs. Most pro-inflammatory conditions are considered to activate the transcription factor NF-kappaB in various cell types. Strong inductive effects of NF-kappaB on proliferation and migration of NSCs have been described. Moreover, NF-kappaB is constitutively active in most tumour cells described so far. Chronic inflammation is also known to initiate cancer. Thus, NF-kappaB might provide a novel mechanistic link between chronic inflammation, stem cells and cancer. This review discusses the apparently ambivalent role of NF-kappaB: physiological maintenance and repair of the brain via NSCs, and a potential role in tumour initiation. Furthermore, it reveals a possible mechanism of brain tumour formation based on inflammation and NF-kappaB activity in NSCs.
Resumo:
Somatic neural and neural crest stem cells are promising sources for cellular therapy of several neurodegenerative diseases. However, because of practical considerations such as inadequate accessibility of the source material, the application of neural crest stem cells is strictly limited. The secondary palate is a highly regenerative and heavily innervated tissue, which develops embryonically under direct contribution of neural crest cells. Here, we describe for the first time the presence of nestin-positive neural crest-related stem cells within Meissner corpuscles and Merkel cell-neurite complexes located in the hard palate of adult Wistar rats. After isolation, palatal neural crest-related stem cells (pNC-SCs) were cultivated in the presence of epidermal growth factor and fibroblast growth factor under serum-free conditions, resulting in large amounts of neurospheres. We used immunocytochemical techniques and reverse transcriptase-polymerase chain reaction to assess the expression profile of pNC-SCs. In addition to the expression of neural crest stem cell markers such as Nestin, Sox2, and p75, we detected the expression of Klf4, Oct4, and c-Myc. pNC-SCs differentiated efficiently into neuronal and glial cells. Finally, we investigated the potential expression of stemness markers within the human palate. We identified expression of stem cell markers nestin and CD133 and the transcription factors needed for reprogramming of somatic cells into pluripotent cells: Sox2, Oct4, Klf4, and c-Myc. These data show that cells isolated from palatal rugae form neurospheres, are highly plastic, and express neural crest stem cell markers. In addition, pNC-SCs may have the ability to differentiate into functional neurons and glial cells, serving as a starting point for therapeutic studies.
Resumo:
One of the challenges in stem cell research is to avoid transformation during cultivation. We studied high passage subventricular zone derived neural stem cells (NSCs) cultures of adult rats in the absence of growth factors epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). We termed this culture exogenous growth factor independent neural stem cells (GiNSCs). GiNSCs expressed stemness markers, displayed a high constitutive NF-kappaB activity and an increased, aberrant, polyploid DNA content. GiNSCs showed a tumorigenic phenotype and formed colonies in a soft agar assay. Microarray analysis showed the up-regulation of the NF-kappaB target gene vascular endothelial growth factor (VEGF). In contrast, proneuronal genes were down-regulated. Under neuronal differentiation conditions GiNSCs adopted a glioma-like phenotype, with nuclear p53, preserving high amounts of Nestin positive cells and prolonged proliferation. Neutralization of VEGF strongly inhibited proliferation and induced differentiation. In a gain of function approach, the transfection of NSCs with constitutively active upstream kinase IKK-2 led to constitutively activated NF-kappaB, proliferation in absence of growth factors and augmented VEGF secretion. In a rescue experiment a reduction of NF-kappaB activity by overexpression of IkappaB-AA1 was able to shift the morphology toward an elongated cell form, increased cell death, and decreased proliferation. Thus GiNSCs may provide a potent tool in cancer research, as their exogenous cytokine independent proliferation and their constitutively high NF-kappaB expression presumes cancerous properties observed in gliomas. In addition, this study might add a novel mechanism for detecting oncogenic transformation in therapeutic stem cell cultures.