794 resultados para [SDE] Environmental Sciences
Resumo:
The concentrations of the water-soluble inorganic aerosol species, ammonium (NH4+), nitrate (NO3-), chloride (Cl-), and sulfate (SO42-), were measured from September to November 2002 at a pasture site in the Amazon Basin (Rondnia, Brazil) (LBA-SMOCC). Measurements were conducted using a semi-continuous technique (Wet-annular denuder/Steam-Jet Aerosol Collector: WAD/SJAC) and three integrating filter-based methods, namely (1) a denuder-filter pack (DFP: Teflon and impregnated Whatman filters), (2) a stacked-filter unit (SFU: polycarbonate filters), and (3) a High Volume dichotomous sampler (HiVol: quartz fiber filters). Measurements covered the late dry season (biomass burning), a transition period, and the onset of the wet season (clean conditions). Analyses of the particles collected on filters were performed using ion chromatography (IC) and Particle-Induced X-ray Emission spectrometry (PIXE). Season-dependent discrepancies were observed between the WAD/SJAC system and the filter-based samplers. During the dry season, when PM2.5 (D-p <= 2.5 mu m) concentrations were similar to 100 mu g m(-3), aerosol NH4+ and SO42- measured by the filter-based samplers were on average two times higher than those determined by the WAD/SJAC. Concentrations of aerosol NO3- and Cl- measured with the HiVol during daytime, and with the DFP during day- and nighttime also exceeded those of the WAD/SJAC by a factor of two. In contrast, aerosol NO3- and Cl- measured with the SFU during the dry season were nearly two times lower than those measured by the WAD/SJAC. These differences declined markedly during the transition period and towards the cleaner conditions during the onset of the wet season (PM2.5 similar to 5 mu g m(-3)); when filter-based samplers measured on average 40-90% less than the WAD/SJAC. The differences were not due to consistent systematic biases of the analytical techniques, but were apparently a result of prevailing environmental conditions and different sampling procedures. For the transition period and wet season, the significance of our results is reduced by a low number of data points. We argue that the observed differences are mainly attributable to (a) positive and negative filter sampling artifacts, (b) presence of organic compounds and organosulfates on filter substrates, and (c) a SJAC sampling efficiency of less than 100%.
Resumo:
Energy intensity of the total primary energy supply (TPES), total final energy consumption (TFC) and LOSSES in the conversion from TPES to TFC were analyzed for the World, OECD and Rest of the World (ROW) countries. LOSSES increased significantly for all groups of countries due to the increase of electricity production from coal in the period studied (1971-2008). Electricity share final consumption almost doubled, increasing from 8.8% to 17.2% in the period studied. However the energy intensity of LOSSES remained practically constant, which reflects the fact that the efficiency of electricity generation from coal (the main source of electricity) remained practically constant in that period. Despite the attractiveness of end-use devices running on electricity such as computers, which is typical of modern societies, the CO(2) emissions are bound to increase unless coal is replaced by less carbon emitting sources such as natural gas, renewables and nuclear energy. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Decarbonizing the world`s energy matrix is the strategy being implemented by most countries to reduce CO(2) emissions and thus contribute to achieve the ultimate objectives of the Climate Convention. The evolution of the carbon intensity (I(c)=CO(2)/GDP) in the period 1990-2007 was encouraging but not sufficient to reduce the growth of carbon emission. As a result of COP-15 in Copenhagen these countries (and regions) made pledges that could lead to more reduction: for the United States a 17% reduction in CO(2) emissions by 2020 below the level of 2005: for the European Union a 20% reduction in CO(2) emissions by 2020 below the 1990 level: for China a 40-45% reduction in the carbon intensity and for India a 20-25% reduction in carbon intensity by 2020. We analyzed the consequences of such pledges and concluded that the expected yearly rate of decrease of the carbon intensity follows basically the ""business as usual"" trend in the period 1990-2007 and will, in all likelihood, be insufficient to reduce carbon emissions up to 2020. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We investigated chronic incorporation of metals in individuals from poor families, living in a small, restrict and allegedly contaminated area in Sao Paulo city, the surroundings of the Guarapiranga dam, responsible for water supply to 25% of the city population. A total of 59 teeth from individuals 7 to 60 years old were collected. The average concentrations of Pb, Cd, Fe, Zn, Mn, Ni and Cr were determined with an Atomic Absorption Spectrophotometer. The concentrations of all metals as function of the individuals` age exhibited a remarkable similarity: peaks between 7 and 10 years and sharply decreasing at higher ages, which could be attributed to alimentary habits and persistence to metals exposure all along the individuals` life span. From all the measured metals, lead and cadmium were a matter of much more concern since their measured values are close to the upper limits of the world wide averages. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This work models the carbon neutralization capacity of Brazil`s ethanol program since 1975. In addition to biofuel, we also assessed the mitigation potential of other energy products, such as, bioelectricity, and CO(2) emissions captured during fermentation of sugar cane`s juice. Finally, we projected the neutralization capacity of sugar cane`s bio-energy system over the next 32 years. The balance between several carbon stocks and flows was considered in the model, including the effects of land-use change. Our results show that the neutralization of the carbon released due to land-use change was attained only in 1992, and the maximum mitigation potential of the sugar cane sector was 128 tonnes Of CO(2) per ha in 2006. An ideal reconstitution of the deployment of the sugar cane sector, including the full exploitation of bio-electricity`s potential, plus the capture Of CO(2) released during fermentation, shows that the neutralization of land-use change emissions would have been achieved in 1988, and its mitigation potential would have been 390 tCO(2)/ha. Finally, forecasts of the sector up to 2039 shows that the mitigation potential in 2039 corresponds to 836 tCO(2)/ha, which corresponds to 5.51 kg Of CO(2) per liter of ethanol produced, or 55% above the negative emission level. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Recently a number of objections have been raised against the use of ethanol produced from agricultural products such as maize, sugarcane, wheat or sugar beets as a replacement for gasoline, despite some of their advantages such as being cleaner and to some extent renewable. We address these objections in this paper. Topics discussed include the ""corn connection"" (which was theorized to be a cause of deforestation in the Amazonia), the rise of food prices due to ethanol production and the real possibilities of ethanol in reducing greenhouse gas emissions. It has been shown that such concerns are grossly exaggerated and that ethanol from sugarcane, as produced in Brazil, is the preferred option for the production of fuel not only in terms of cost but also as a favourable energy balance. Finally, the possibility of expanding ethanol production to other sugar-producing countries is also discussed. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The Southwest region of the Bahia state in Brazil hosts the largest uranium reserve of the country (100 kton in uranium, only), plus the cities of Caetite, Lagoa Real and Igapora. In this work, aim was at the investigation of uranium burdens on residents of these cities by using teeth as bioindicators, as a contribution for possible radiation protection measures. Thus, a total of 41 human teeth were collected, plus 50 from an allegedly uranium free area (the control region). Concentrations of uranium in teeth from residents of 5- to 87-y old were determined by means of a high-resolution inductively coupled plasma mass spectrometer (ICP-MS). The highest uranium concentration in teeth was measured from samples belonging to residents of Caetite (median equal to 16 ppb). Assuming that the uranium concentrations in teeth and bones are similar within 10-20% (for children and young adults), it concluded that uranium body levels in residents of Caetite are at least one order of magnitude higher than the worldwide average. This finding led to conclude that daily ingestion of uranium, from food and water, is equally high.
Resumo:
We here report the first magnetically recoverable Rh(0) nanoparticle-supported catalyst with extraordinary recovery and recycling properties. Magnetic separation has been suggested as a very promising technique to improve recovery of metal-based catalysts in liquid-phase batch reactions. The separation method is significantly simple, as it does not require filtration, decantation, centrifugation, or any other separation technique thereby, overcoming traditional time- and solvent-consuming procedures. Our new magnetically separable catalytic system, comprised of Rh nanoparticles immobilized on silica-coated magnetite nanoparticles, is highly active and could be reused for up to 20 times for hydrogenation of cyclohexene (180,000 mol/mol(Rh)) and benzene (11,550 mol/mol(Rh) under mild conditions. (c) 2007 Elsevier B. V. All fights reserved.
Resumo:
We here report the synthesis, characterization and catalytic performance of new supported Ru(III) and Ru(0) catalysts. In contrast to most supported catalysts, these new developed catalysts for oxidation and hydrogenation reactions were prepared using nearly the same synthetic strategy, and are easily recovered by magnetic separation from liquid phase reactions. The catalysts were found to be active in both forms, Ru(III) and Ru(0), for selective oxidation of alcohols and hydrogenation of olefins, respectively. The catalysts operate under mild conditions to activate molecular oxygen or molecular hydrogen to perform clean conversion of selected substrates. Aryl and alkyl alcohols were converted to aldehydes under mild conditions, with negligible metal leaching. If the metal is properly reduced, Ru(0) nanoparticles immobilized on the magnetic support surface are obtained, and the catalyst becomes active for hydrogenation reactions. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Radon levels in two old mines in San Luis, Argentina, are reported and analyzed. The radiation dose and environmental health risk of (222)Rn concentrations to both guides and visitors were estimated. CR-39 nuclear track detectors were used for this purpose. The values for the (222)Rn concentration at each monitoring site ranged from 0.43 +/- 0.04 to 1.48 +/- 0.12 kBq m(-3) in the Los Cndores wolfram mine and from 1.8 +/- 0.1 to 6.0 +/- 0.5 kBq center dot m(-3) in the La Carolina gold mine, indicating that, in this mine, the radon levels exceed up to four times the action level of 1.5 kBq m(-3) recommended by the International Commission on Radiological Protection. The patterns of the radon transport process revealed that the La Carolina gold mine can be interpreted as a gas confined into a single tube with constant cross-section and air velocity. Patterns of radon activity, taking into account the chimney-effect winds, were used to detect tributary currents of air from shafts or larger fissures along the main adit of the Los Cndores mine, showing that radon can be used as an important tracer of tributary air currents stream out from fissures and smaller voids in the rock of the mine.
Resumo:
Aquatic macrophytes Salvinia auriculata, Pistia stratiotes and Eichhornia crassipes were chosen to investigate the Cr(VI) reduced by root-based biosorption in a chromium uptake experiment, using a high-resolution XRF technique. These plants were grown in hydroponics medium supplied with non-toxic Cr concentrations during a 27-day metal uptake experiment. The high-resolution Cr-K beta fluorescence spectra for dried root tissues and Cr reference material (100% Cr, Cr(2)O(3), and CrO(3)) were measured using an XRF spectrometer. For all species of aquatic plant treated with Cr(VI), the energy of the Cr-K beta(2,5) line was shifted around 8 eV below the same spectral line identified for the Cr(VI) reference, but it was also near to the line identified for the Cr(III) reference. Moreover, there was a lack of the strong Cr-K beta"" line assigned to the Cr(VI) reference material within the Cr(VI)-treated plant spectra, suggesting the reduction of Cr(VI) for other less toxic oxidation states of Cr. As all Cr-K beta spectra of root tissue species were compared, the peak energies and lineshape patterns of the Cr-K beta(2,5) line are coincident for the same aquatic plant species, when they were treated with Cr(III) and Cr(VI). Based on the experimental evidence, the Cr(VI) reduction process has happened during metal biosorption by these plants. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Two indigenous ceramics fragments, one from Lagoa Queimada (LQ) and another from Barra dos Negros (BN), both sites located on Bahia state (Brazil), were dated by termoluminescence (TL) method. Each fragment was physically prepared and divided into two fractions, one was used for TL measurement and the other for annual dose determination. The TL fraction was chemically treated, divided in sub samples and irradiated with several doses. The plot extrapolation from TL intensities as function of radiation dose enabled the determination of the accumulated dose (D(ac)), 3.99 Gy and 1.88 Gy for LQ and BN, respectively. The annual dose was obtained through the uranium, thorium and potassium determination by ICP-MS. The annual doses (D(an)) obtained were 2.86 and 2.26 mGy/year. The estimated ages were similar to 1375 and 709 y for BN and LQ ceramics, respectively. The ages agreed with the archaeologists` estimation for the Aratu and Tupi tradition periods, respectively.
Resumo:
The effect of Cr(6+) on Allium cepa root length was studied using both clean and polluted river waters. Seven series of Cr(6+)-doped polluted and non-polluted river waters were used to grow onions. Chromium concentration (Cr(6+)) of 4.2 mg L(-1)(EC(50) value), doped in clean river water caused a 50% reduction of root length, while in organically polluted samples similar root growth inhibition occurred at 12.0 mg Cr(6+) L(-1). The results suggested that there was a dislocation to higher values in toxic chromium concentration in polluted river water due to the eutrophization level of river water.
Resumo:
Radon and gamma radiation level measurements were carried out inside the La Carolina mine, one of the oldest gold mining camps of southern South America, which is open for touristic visits nowadays. CR-39 track-etch detectors and thermoluminescent dosimeters of natural CaF(2) and LiF TLD-100 were exposed at 14 points along the mine tunnels in order to estimate the mean (222)Rn concentration and the ambient dose equivalent during the summer season (November 2008 to February 2009). The values for the (222)Rn concentration at each monitoring site ranged from 1.8 +/- 0.1 kBq m(-3) to 6.0 +/- 0.5 kBq m(-3), with a mean value of 4.8 kBq m(-3), indicating that these measurements exceed in about three times the upper action level recommended by ICRP for workplaces. The correlations between radon and gamma radiation levels inside the mine were also investigated. Effective doses due to (222)Rn and gamma rays inside the mine were determined, resulting in negligible values to tourists. Considering the effective dose to the mine tourist guides, values exceeding 20 mSv of internal contribution to the effective doses can be reached, depending on the number of working hours inside the mine. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The impact of human activity on the sediments of Todos os Santos Bay in Brazil was evaluated by elemental analysis and (13)C Nuclear Magnetic Resonance ((13)C NMR). This article reports a study of six sediment cores collected at different depths and regions of Todos os Santos Bay. The elemental profiles of cores collected on the eastern side of Frades Island suggest an abrupt change in the sedimentation regime. Auto-regressive Integrated Moving Average (ARIMA) analysis corroborates this result. The range of depths of the cores corresponds to about 50 years ago, coinciding with the implantation of major onshore industrial projects in the region. Principal Component Analysis of the (13)C NMR spectra clearly differentiates sediment samples closer to the Subae estuary, which have high contents of terrestrial organic matter, from those closer to a local oil refinery. The results presented in this article illustrate several important aspects of environmental impact of human activity on this bay. (C) 2011 Elsevier Ltd. All rights reserved.