976 resultados para (Wistar rat)
Resumo:
Topoisomerase II (topo II) is a dyadic enzyme found in all eukaryotic cells. Topo II is involved in a number of cellular processes related to DNA metabolism, including DNA replication, recombination and the maintenance of genomic stability. We discovered a correlation between the development of postnatal testis and increased binding of topo IIalpha to the chromatin fraction. We used this observation to characterize DNA-binding specificity and catalytic properties of purified testis topo IIalpha. The results indicate that topo IIalpha binds a substrate containing the preferred site with greater affinity and, consequently, catalyzes the conversion of form I to form IV DNA more efficiently in contrast to substrates lacking such a site. Interestingly, topo IIalpha displayed high-affinity and cooperativity in binding to the scaffold associated region. In contrast to the preferred site, however, high-affinity binding of topo IIalpha to the scaffold-associated region failed to result in enhanced catalytic activity. Intriguingly, competition assays involving scaffold-associated region revealed an additional DNA-binding site within the dyadic topo IIalpha. These results implicate a dual role for topo IIalpha in vivo consistent with the notion that its sequestration to the chromatin might play a role in chromosome condensation and decondensation during spermatogenesis.
Resumo:
Aim: To identify flutamide regulated genes in the rat ventral prostate. Methods: Total RNA from ventral prostates control and flutamide treated rats were isolated. Differentially expressed transcripts were identified using display reverse transcriptase polymerase chain reaction. The effect of castration on the expression of regulated transcripts was studied. Results: We have identified beta 2-microglobulin, cytoplasmic FMR1 protein 2 and pumilio 1 as flutamide induced and spermine binding protein and ribophorin II as flutamide targets in the rat ventral prostate. Although flutamide treatment caused an induction of pumilio I mRNA, had no effect. Conclusion: Castration and flutamide treatments exert differential effects on gene expression. might also have direct AR independent effects, which might have implications in the emergence of androgen dent prostate cancer and the failure of flutamide therapy.
Resumo:
The role of pheromones and pheromone-binding proteins in the laboratory rat has been extensively investigated. However, we have previously reported that the preputial gland of the Indian commensal rat produces a variety of pheromonal molecules and preputial glands would seem to be the predominant source for pheromonal communication. The presence of pheromone-binding proteins has not yet been identified in the preputial gland of the Indian commensal rat; therefore, the experiments were designed to unravel the alpha(2u)-globulin (alpha 2u) and its bound volatiles in the commensal rat. Total preputial glandular proteins were first fractionated by sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) and subsequently analyzed by mass spectrometry. Further, we purified alpha 2u and screened for the presence of bound pheromonal molecules with the aid of gas chromatography/mass spectrometry (GC/MS). A novel alpha 2u was identified with a high score and this protein has not been previously described as present in the preputial gland of Indian commensal rats.This novel alpha 2u was then characterized by tandem mass spectrometry (MS/MS). Peptides with m/z values of 969, 1192, 1303 and 1876 were further fragmented with the aid of MS/MS and generated de novo sequences which provided additional evidence for the presence of alpha 2u in the preputial gland. Finally, we identified the presence of farnesol 1 and 2 bound to alpha 2u. The present investigation confirms the presence of alpha 2u (18.54 kDa) in the preputial gland of the Indian commensal rat and identifies farnesol 1 and 2 as probably involved in chemo-communication by the Indian commensal rat.Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
1. 1. Biosynthetic experiments in vitro with slices of livers from normal and vitamin A-deficient rats confirmed that synthesis of ubiquinone did not increase in vitamin A deficiency. 2. 2. During development of deficiency of vitamin A in the rat, there was a definite increase in the synthesis of ubiquinone at the 10-days stage but this reverted to low, initial level by 20 days and after. 3. 3. Vitamin A analogues, 3-dehydroretinal, 5,6-monoepoxyretinal and retinoic acid, which supported growth have restored ubiquinone concentration to the normal levels and relieved the lowering in its catabolism. The biologically inert 5,8-monoepoxyretinal was the least active of the analogues tested. 4. 4. The concentration and synthesis of ubiquinone in the liver decreased under conditions of hypervitaminosis A. 5. 5. The experimental evidence does not support the hypothesis of inverse relationship between vitamin A and ubiquinone synthesis.
Resumo:
1. Accumulation of ubiquinone in the livers of rats exposed to a cold environment was shown to be due to both decreased catabolism during the entire experimental period and increased synthesis during an intermediate stage (10–20 days). 2. The increased endogenous synthesis in the cold-exposed rats was eliminated when ubiquinone accumulated in the liver after exposure for 40 days (coinciding with cclimatization), or by absorption of the exogenous dietary supply, possibly by the mechanism of end-product regulation.
Resumo:
The effect of dietary cholesterol and ubiquinone on the synthesis of isoprene compounds in the liver, as tested by the incorporation of acetate-1-14C and mevalonate-2-14C, was studied in rats. In cholesterol feeding, there appears to be a second site of inhibition after squalene in addition to the previously known primary site of inhibition at the β-hydroxy-β-methyl glutaryl-CoA reductase. Feeding ubiquinone inhibited at some common step between acetate and mevalonate in the synthesis of both cholesterol and ubiquinone, without affecting the acetate activation or fatty acid synthesis, and also at a step in the synthesis of ubiquinone not common with the synthesis of cholesterol. These results are suggestive of a role for ubiquinone in the regulation of isoprene synthesis.
Rapid conversion of retinal (vitamin A aldehyde) to retinoic acid (vitamin A acid) in the living rat
Resumo:
Although several authors have implicated 3-hydroxyanthranilic acid (3-OHA) as an intermediate in tryptophaniacin pathway in animals (Kaplan, 1961), alternative pathways of metabolism of this compound have not been fully explored. Madhusudanan Nair obtained an enzyme from spinach leaves which could convert 3-OHA to cinnabarinic acid (private communication). Viollier and Süllmann (1950) reported the conversion of 3-OHA to an unidentified red compound by rat liver homogenates. The present investigation describes the identification of this product as cinnabarinic acid (2-amino-3-H-isophenoxazine-3-one-1,9-dicarboxylic acid). Cinnabarinic acid is known to occur in nature along with cinnabarin is olated from the fungus Polystictus sanguineus (Gripenberg et al., 1957; Gripenberg, 1958).
Resumo:
Coenzyme Q was found to be distributed in rat liver cell fractions. Mitochondria accounted for only 40–60% of the total. The presence of coenzyme Q in nuclei, isolated by several methods, could always be correlated with the presence of oxidative enzymes. It has been established that coenzyme Q is a constituent of microsomes. Administered coenzyme Q10-C14 was preferentially taken up by mitochondrial and microsomal fractions. Exogenous coenzyme Q appears to be rapidly metabolized.
Resumo:
VITAMIN A is stored in rat liver largely as its ester with small amounts of the alcohol, but is transported in the normal circulating blood in the latter form1. Although it was generally believed that the alcohol form is the more physiological state of the vitamin, since the work of Dowling and Wald2, it is being recognized that vitamin A acid and not the alcohol may be nearer to the 'active vitamin A'. If this were to be so, it would be important to demonstrate that a mechanism exists in the rat for the production of vitamin A acid from vitamin A alcohol through the intermediate, the aldehyde. Regarding the formation of the aldehyde, it has been well established that the alcohol dehydrogenase can bring about the conversion of vitamin A alcohol to retinene3. The presence of an enzyme in rat and pig liver catalysing the oxidation of retinene1 and retinene2 to the corresponding acids has been demonstrated in the present work and the partially purified enzyme preparation shown to be completely devoid of alcohol dehydrogenase activity.
Resumo:
COENZYME Q (CoQ), which is widely distributed in animal, plant and microbial sources, has been implicated in electron transport1 and generally assumed to be associated with mitochondria. However, it has also been found in non-mitochondrial fractions of green leaves, although it appears to be concentrated in mitochondria2. A similar distribution has now been demonstrated in rat liver cell fractions.
Resumo:
A reciprocal relationship exists between the cytochrome P-450 content and d-aminolaevulinate synthetase activity in adult rats. In young rats the basal d-aminolaevulinate synthetase activity is higher and the cytochrome P-450 content is lower compared with the adult rat liver. Administration of allylisopropylacetamide neither induces the enzyme nor causes degradation of cytochrome P-450 in the young rat liver, unlike adult rat liver. Allylisopropylacetamide fails to induce d-aminolaevulinate synthetase in adrenalectomized–ovariectomized animals or intact animals pretreated with successive doses of the drug, in the absence of cortisol. The cortisol-mediated induction of the enzyme is sensitive to actinomycin D. Allylisopropylacetamide administration degrades microsomal haem but not nuclear haem. Haem does not counteract the decrease in cytochrome P-450 content caused by allylisopropylacetamide administration, but there is evidence for the formation of drug-resistant protein-bound haem in liver microsomal material under these conditions. Phenobarbital induces d-aminolaevulinate synthetase under conditions when there is no breakdown of cytochrome P-450. On the basis of these results and those already published, a model is proposed for the regulation of d-aminolaevulinate synthetase induction in rat liver.