911 resultados para ~1H-NMR
Resumo:
The title compound, C16H18N2O2, is an important precursor in the synthesis of 1,2,3,4-tetrahydropyrazinoindoles, which show excellent antihistamine, antihypertensive and central nervous system depressant properties. The carbethoxy group attached to C2 and the planar cyanoethyl group attached to N1 make dihedral angles of 11.0(4) and 75.0(3)degrees, respectively, with the mean plane of the indole ring, The C-C=N chain is linear with a bond angle of 179.3 (4)degrees.
Resumo:
The title compound, C4H5N3O2, features an essentially planar molecule (r.m.s. deviation for all non-H atoms = 0.013 angstrom). The crystal structure is stabilized by intermolecular N-H center dot center dot center dot O hydrogen bonds and pi-pi stacking interactions (centroid centroid distance 3.882 angstrom).
Resumo:
Neutral capsular polysaccharides (CPSs) were isolated from Acinetobacter baumannii NIPH190, NIPH201, and NIPH615. The CPSs were found to contain common monosaccharides only and to be branched with a side-chain 1→3-linked β-d-glucopyranose residue. Structures of the oligosaccharide repeat units (K units) of the CPSs were elucidated by 1D and 2D 1H and 13C NMR spectroscopy. Novel CPS biosynthesis gene clusters, designated KL30, KL45, and KL48, were found at the K locus in the genome sequences of NIPH190, NIPH201, and NIPH615, respectively. The genetic content of each gene cluster correlated with the structure of the CPS unit established, and therefore, the capsular types of the strains studied were designated as K30, K45, and K48, respectively. The initiating sugar of each K unit was predicted, and glycosyltransferases encoded by each gene cluster were assigned to the formation of the linkages between sugars in the corresponding K unit.
Resumo:
Yellow form (I): Mr= 350.09, monoclinic, P2Jn, Z--4, a=9.525(1), b=14.762(1), c= 11.268(1),/t, fl= 107.82 (1) o , V= 1508.3 A 3 , Din(flotation in aqueous KI)= 1.539 (2), D x= 1.541 (2) g cm -3, #(Cu Ka, 2 = 1.5418 A) = 40.58 cm -~, F(000) = 712, T= 293 K, R = 8.8% for 2054 significant refections. Red form (II): Mr= 350.09, triclinic, Pi, Z=2, a=9.796(2), b= 10.750 (2), c= 7.421 (1)A, a= 95.29 (2), fl= 0108-2701/84/111901-05501.50 70.18 (1), y = 92-.76 (2) °, V= 731.9 A 3, Din(flotation in KI) = 1.585 (3), D x = 1.588 (3) g cm -3, ~t(Cu Ka, 2 = 1.5418/~) = 40.58 cm -1, F(000) = 356, T=293 K, R = 5.8% for 1866 significant reflections. There are no unusual bond distances or angles. The triazole and two phenyl rings are planar. On the basis of packing considerations the possibility of intermolecular interactions playing a role in the reactivity of the starting material is ruled out.
Resumo:
Internal motions in a A2BX4 compound (tetramethylammonium tetrabromo cadmate) have been investigated using proton spin—lattice relaxation time (T1) and second moment (M2) measurements in the temperature range 77 to 400 K. T1 measurements at three Larmor frequencies (10, 20 and 30 MHz) show isotropic tumbling of the tetramethylammonium group, random reorientation of methyl groups and spin—rotation interaction, and the corresponding parameters have been computed. The cw spectrum is narrow throughout the temperature range and shows side bands at the lowest temperature. This observation, along with the free-induction-decay behavior at these temperatures, is interpreted as the onset of a coherent motion, e.g. methyl group quantum tunnelling.
Resumo:
Coordination compounds of the polypyridines, 2,2 ' -bipyridine (bipy) and 1,10-penanthroline (phen) have offered renewed interest on account of their manifold applications and from the point of view of understanding their structure-reactivity relationships.1 Iron(II) reacts with them to form tris-complexes possessing spin-paired ground states. Cyanide ion greatly enhances the rate of displacement of bipy or phen to form the Schilt class of compounds. Fe(bipy)2(CN)2 and Fe(phen)2(CN)2. They display varying colours in solution depending upon the nature of the solvent and react reversibly with acids to form diprotonated species.2 Magnetic circular dichroism studies have been reported to describe their lowest electronic excitation.
Resumo:
From the proton NMR spectra of Nfl-dimethyluracil oriented in two different nematic solvents, the internal rotation of the methyl groups about the N-C bonds is studied. It has been observed that the preferred conformation of the methyl group having one carbonyl in the vicinity is the one where a C-H bond is in the ring plane pointing toward the carbonyl group. The results are not sensitive to the mode of rotation of the other methyl group. These data are interpreted in terms of the bond polarizations.
Resumo:
Abstract is not available.
Resumo:
A locked high-pressure cell with working pressure range up to 10 kbars suitable for low-temperature studies to 77 K has been described. It can be used for both EPR and NMR studies of single crystals (and other solid samples). The high-pressure seal and all other aspects of the cell remain the same for either application. Only a change of the bottom plug is required for a switch from a nuclear-magnetic-resonance (NMR) to an electron-paramagnetic-resonance (EPR) experiment. Details of the procedure for the calibration of pressure inside the cell at various temperatures are discussed. The performance of the cell in EPR (Cr3+ion) and NMR (27Al nucleus) studies is reported.
Resumo:
Spin-state equilibria in the whole set of LCoO3 (where L stands for a rare-earth metal or Y) have been investigated with the use of 59Co NMR as a probe for the polycrystalline samples (except Ce) in the temperature interval 110-550 K and frequency range 3- 11.6 MHz. Besides confirming the coexistence of the high-spin—low-spin state in this temperature range, a quadrupolar interaction of ∼0.1 -0.5 MHz has been detected for the first time from 59Co NMR. The NMR line shape is found to depend strongly on the relative magnitude of the magnetic and quadrupolar interactions present. Analysis of the powder pattern reveals two basically different types of transferred hyperfine interaction between the lighter and heavier members of the rare-earth series. The first three members of the lighter rare-earth metals La, Pr (rhombohedral), and Nd (tetragonal), exhibit second-order quadrupolar interaction with a zero-asymmetry parameter at lower temperatures. Above a critical temperature TS (dependent on the size of the rare-earth ion), the quadrupolar interaction becomes temperature dependent and eventually gives rise to a first-order interaction thus indicating a possible second-order phase change. Sm and Eu (orthorhombic) exhibit also a second-order quadrupolar interaction with a nonzero asymmetry parameter ((η∼0.47)) at 300 K, while the orthorhombic second-half members (Dy,..., Lu and Y) exhibit first-order quadrupolar interaction at all temperatures. Normal paramagnetic behavior, i.e., a linear variation of Kiso with T-1, has been observed in the heavier rare-earth cobaltites (Er,..., Lu and Y), whereas an anomalous variation has been observed in (La,..., Nd)CoO3. Thus, Kiso increases with increasing temperature in PrCoO3 and NdCoO3. These observations corroborate the model of the spin-state equilibria in LCoO3 originally proposed by Raccah and Goodenough. A high-spin—low-spin ratio, r=1, can be stabilized in the perovskite structure by a cooperative displacement of the oxygen atoms from the high-spin towards the low-spin cation. Where this ordering into high- and low-spin sublattices occurs at r=1, one can anticipate equivalent displacement of all near-neighbor oxygen atoms towards a low-spin cobalt ion. Thus the heavier LCoO3 exhibits a small temperature-independent first-order quadrupolar interaction. Where r<1, the high- and low-spin states are disordered, giving rise to a temperature-dependent second-order quadrupolar interaction with an anomalous Kiso for the lighter LCoO3.
Resumo:
Proton NMR spectra of 1,3-diazanaphthalene and 1,2,4-triazanaphthalene have been investigated in the nematic phase of three liquid crystals. The spectral analysis provided direct dipole-dipole couplings which have been used to derive the molecular structure. Geometry of the phenyl ring in both the molecules deviates from the regular hexagonal structure. Signs of the order parameter of the largest magnitude are opposite in liquid crystals with positive diamagetic anisotropies.
Resumo:
Hyperfine interaction parameters reveal differences in the nature of spin-state equilibria in the lighter and heavier rare-earth cobaltites; the crystal-field parameter is lower in the lighter cobaltites. Temperature variation of the quadrupolar coupling constant is also more marked in the lighter rare-earth cobaltites, with NdCoO3 showing evidence for a structural phase transition.
Resumo:
It is shown that cholesteric liquid crystal mixtures can be used as convenient solvents in NMR experiments for the determination of molecular structure. The advantages of such solvents are pointed out. The application is demonstrated for acetonitrile; the value for the HCH bond angle thus determined is 108.8°.
Resumo:
Monopropiophenone thiocarbonohydrazone has been isolated in both linear and cyclic isomeric forms. Each form has been shown to isomerize and exist in equilibrium with the other in DMSO-d6 solution by 1H and 13C NMR spectroscopy. The kinetics of this transformation show attainment of equilibrium in approximately 6 h, with a linear to cyclic configuration ratio of 40:60.