862 resultados para white fiber dissection
Resumo:
In this study, the effect of the process variables of the air-drying of Sicilian lemon residues on some technological properties of the fibers produced was studied. The determination and modeling of desorption isotherms were used to establish the equilibrium moisture content at 60, 75, and 90 °C using the static method with 8 saturated salt solutions. The best fit was obtained with BET and GAB models. The drying process was conducted in a vertical tray dryer and delineated according to a central composite experimental design (2²) using the following as factors: air velocity (0.5, 0.75 and 1 m/s) and temperature (60, 75, and 90 °C), and it presented a good fit to the exponential model (R² > 99.9%). The experimental design responses evaluated were the technological properties of the fibers: water-holding, oil-holding, and swelling capacity. Since these properties were present in high levels, the lemon residues could be used to increase content of fibers in foods resulting in the addition of nutritional benefits for the consumers.
Resumo:
Loquat is a fruit with high market value cultivated in Southeast Brazil. Despite of this, there are little details about its quality characteristics. Fruits from five loquat cultivars, developed using genetic breeding, were analyzed to assess their compositional traits. The cultivars Centenária, Mizuho, Mizumo, Néctar de Cristal and Mizauto were selected based on their high productivity and resistance to diseases. Soluble sugars, organic acids, and carotenoids were quantified using liquid chromatography. The cultivar (cv.) with the highest total sugar concentration was Mizumo and the lowest concentration was found in Centenária. The main sugar detected was sucrose, and the malic acid was the major organic acid. Ascorbic acid was detected in small amounts. The total dietary fiber contents were almost the same in all cultivars. The major carotenoids detected were β-carotene and β-cryptoxanthin, except for the cultivar Nectar de Cristal, a white pulp loquat. These results contribute to the knowledge about de physiology of loquat fruit, an interesting raw material due to its nutritional and sensorial characteristics. Furthermore, the results obtained could help to identify the most appropriate use of the loquats with different attributes either for consumption in natura or for industrial processing.
Resumo:
Four varieties of an Andean indigenous crop, quinoa (Chenopodium quinoa Willd.), were evaluated as a source of dietary fiber, phenolic compounds and antioxidant activity. The crops were processed by extrusion-cooking and the final products were analyzed to determine the dietary fiber, total polyphenols, radical scavenging activity, and in vitro digestibility of starch and protein. There were no significant differences in the contents of total dietary fiber between varieties of quinoa. In all cases, the contents of total and insoluble dietary fiber decreased during the extrusion process. At the same time, the content of soluble dietary fiber increased. The content of total phenolic compounds and the radical scavenging activity increased during the extrusion process in the case of all 4 varieties. There were significant differences between the varieties and the content of total polyphenols. The in vitro protein digestibility of quinoa varieties was between 76.3 and 80.5% and the in vitro starch digestibility was between 65.1 and 68.7%. Our study demonstrates that quinoa can be considered a good source of dietary fiber, polyphenols and other antioxidant compounds and that extrusion improves the nutritional value.
Resumo:
Blends of fiber from sugar cane bagasse, corn starch, and whey protein concentrate were extruded. A single screw extruder, equipped with a screw at a constant compression ratio of 1:1 and a die diameter of 3 mm, was used. The best processing conditions were determined according to a central composite rotatable design (α = 1.41) with 5 central points, which gives a total of 13 tests. During the extrusion process the content of insoluble fiber decreased and that of soluble fiber increased. An increase in the contents of fiber and in the barrel temperature resulted in a decrease in the expansion index values and an increase in the water absorption index values; whereas in blends with intermediate fiber contents the effects in these parameters were found to be the opposite. High fiber contents increased penetration force but decreased luminosity, water solubility index values and the adhesive force in gels. The extrusion process improved the functional properties of sugarcane fiber bagasse enabling its addition to diverse alimentary systems.
Resumo:
The main purpose of this study was to produce hamburgers with partial substitution of the meat with cashew apple residue powder. The powder residue was obtained after the extraction of the pulp and dehydration in stove with air circulation. Three formulations of hamburgers with increasing concentration of the residue as well as a control sample were prepared. The formulated products with cashew apple residue powder presented lower humidity and proteins and 35% lipid reduction. However, there was an increase in carbohydrates and pH with the addition of the powder from the cashew apple residue. Some formulations showed an improvement of the final product yield. The total dietary fiber value was between 0 and 7.66%, with higher content of insoluble dietary fiber. The addition of up to 10.70% of the residue did not cause significant sensory changes in the flavor of the samples. The production of hamburgers with a partial substitution of cow meat with the cashew apple residue could be a feasible option since it resulted in product with high nutritional quality that is rich or have high dietary fiber content and is low in fat.
Resumo:
Yolk color and egg white (albumen) cleanliness and viscosity are important parameters by which consumers judge the quality of eggs. This study aimed to investigate changes in albumen viscosity during storage of eggs for up to 36 days from two different commercial laying hen strains (Carijo Barbada and Isa Brown) fed a diet containing annatto (1.5 and 2.0%) or a synthetic additive without synthetic colorants (control). Analyses of humidity, albumen height, pH, viscosity, foam formation, and stability were carried out on eggs. Carijo Barbada strain had smaller albumen, lower humidity and higher egg white viscosity than Isa Brown strain; however, with storage, viscosity lowered significantly on both strains. Initially, the addition of 2.0% of annatto or a synthetic additive increased viscosity in both strains, but with storage only the control maintained longer viscosity. Lower viscosity did not change foam density and stability.
Resumo:
White tea is an unfermented tea made from young shoots of Camellia sinensis protected from sunlight to avoid polyphenol degradation. Although its levels of catechins are higher than those of green tea (derived from the same plant), there are no studies addressing the relationship between this tea and obesity associated with oxidative stress.The objective of this study was to evaluate the effect of white tea on obesity and its complications using a diet induced obesity model. Forty male C57BL/6 mice were fed a high-fat diet to induce obesity (Obese group) or the same diet supplemented with 0.5% white tea extract (Obese + WTE) for 8 weeks. Adipose tissue, serum lipid profile, and oxidative stress were studied. White tea supplementation was not able to reduce food intake, body weight, or visceral adiposity. Similarly, there were no changes in cholesterol rich lipoprotein profile between the groups. A reduction in blood triacylglycerols associated with increased cecal lipids was observed in the group fed the diet supplemented with white tea. White tea supplementation also reduced oxidative stress in liver and adipose tissue. In conclusion, white tea extract supplementation (0.5%) does not influence body weight or adiposity in obese mice. Its benefits are restricted to the reduction in oxidative stress associated with obesity and improvement of hypertriacylglycerolemia.
Resumo:
Oats have received attention because of their nutritional characteristics, especially their high-quality content of β-glucan. The drying process reduces water content; therefore they can be preserved for long periods. However, high-temperature drying process may affect the physical, chemical, and functional properties of the grains. The objective of this study was to evaluate the effect of different drying temperatures on β-glucan quality in oat grains. Grains of oats (Avena sativa, L.), cultivar Albasul, harvested at harvest moisture content of 23% were submitted to stationary drying at air temperatures of 25, 50, 75, and 100 ºC until they reached 13% moisture content. The β-glucan content was determined in samples of oat grains and extraction was performed using water as solvent at 90 ºC. The β-glucan extract was evaluated for water holding capacity, water retention capacity, capacity of displacement, and gelation properties. Stationary of oat grains at air temperatures above 25 ºC decreased the water holding capacity, whereas the content of β-glucan and the water retention capacity of β-glucan extract was affected at temperatures above 50 ºC. Physical changes such as increased gelation capacity of the β-glucan extract occurred following drying at air temperature over 75 ºC.
Resumo:
The aim of this study was to verify the influence of the addition of the enzyme xylanase (four concentrations: 0, 4, 8, and 12 g.100 kg-1 flour) on the characteristics of loaf bread made with white wheat flour or whole grain wheat flour. Breads made from white flour and added with xylanase had higher specific volumes than those of the control sample (no enzyme); however, the specific volume did not differ significantly (p < 0.05) among the breads with different enzyme concentrations. All formulations made from whole grain wheat flour and added with xylanase also had specific volumes significantly higher than those of the control sample, and the highest value was found for the 8 g xylanase.100 kg-1 flour formulation. With respect to moisture content, the formulations with different enzyme concentrations showed small significant differences when compared to the control samples. In general, breads made with the addition of 8 g enzyme.100 kg-1 flour had the lowest firmness values, thus presenting the best technological characteristics.
Resumo:
Orange fiber was used as a novel fat replacer in light lemon ice cream. Nine ice cream formulations were compared: standard control ice cream (IC); ice cream with fiber (F1) from the peel, bagasse, and orange seed (ICA and ICB); ice cream with fiber (F2) from the orange peel alone (ICC and ICD); ice cream with fiber (F3) from the peel, bagasse, and orange seed pretreated with hydro-distillation (ICE and ICF); and ice cream with fiber (F4) from the orange peel pretreated with hydro-distillation (ICG and ICH).The orange fiber reduced the ice cream fat content (50 %) and the overrun ratio and increased the fiber content and the hardness, gumminess, and springiness values, but it did not affect the adhesiveness and odor of the samples. The samples with 1.0 % of orange fiber showed low melting rate values than those of the control ice cream. The overall acceptance of the ice cream with 1.0 % of pre-treated orange peel fiber did not differ from that of the control ice cream (80 %). The orange fiber proved a promising food ingredient since it can be used to decrease the fat content and increase bioactive compounds content, such as fiber and carotenoids.
Resumo:
In this research, the probiotic Streptococcus thermophilus was inoculated into milk as co-culture to produce probiotic cheese. The effects of using Streptococcus thermophilus with other probiotic bacteria on cheese composition, and microbiological viability during 28 days of storage were investigated. Sensorial properties were determined only at 1st and 28th days of storage. The results showed that the use of Streptococcus thermophilus as co-culture in probiotic cheese production did not affect negatively the cheese components. Fat and dry matter properties of cheese weren't influenced by added probiotic bacteria. However, different level of pH, salt and lactic acid were detected. All probiotic bacteria were present in high levels throughout storage of cheeses, above 7 Log cfu.g- 1, threshold required for probiotic activity. Sensory panel showed that the highest average sensory evaluation points were recorded in cheeses made with Streptococcus thermophilus plus Lactobacillus casei, whereas other probiotic bacteria combinations had been affected less in regard to taste or appearance.
Resumo:
The marine bioprocessing industry offers great potential to utilize byproducts for fish meal replacement in aquafeeds. Jumbo squid is an important fishery commodity in Mexico, but only the mantle is marketed. Head, fins, guts and tentacles are discarded in spite of being protein-rich byproducts. This study evaluated the use of two jumbo squid byproduct hydrolysates obtained by acid-enzymatic hydrolysis (AEH) and by autohydrolysis (AH) as ingredients in practical diets for shrimp. The hydrolysates were included at levels of 2.5 and 5.0% of the diet dry weight in four practical diets, including a control diet without hydrolysate. Shrimp growth and survival were not significantly affected by the dietary treatments. Postharvest quality of abdominal muscle was evaluated in terms of proximate composition and sensory evaluation. Significantly higher crude protein was observed in the muscle of shrimp fed the highest hydrolysate levels, AH 5% (204.8 g kg- 1) or AEH 5% (201.3 g kg- 1). Sensory analysis of cooked muscle showed significant differences for all variables evaluated: color, odor, flavor, and firmness. It was concluded that Jumbo squid byproducts can be successfully processed by autohydrolysis or acid-enzymatic hydrolysis, and that up to 5.0% of the hydrolysates can be incorporated into shrimp diets without affecting growth or survival.
Resumo:
A cranial bone defect may result after an operative treatment of trauma, infection, vascular insult, or tumor. New biomaterials for cranial bone defect reconstructions are needed for example to mimic the biomechanical properties and structure of cranial bone. A novel glass fiber-reinforced composite implant with bioactive glass particulates (FRC–BG, fiber-reinforced composite–bioactive glass) has osteointegrative potential in a preclinical setting. The aim of the first and second study was to investigate the functionality of a FRC–BG implant in the reconstruction of cranial bone defects. During the years 2007–2014, a prospective clinical trial was conducted in two tertiary level academic institutions (Turku University Hospital and Oulu University Hospital) to evaluate the treatment outcome in 35 patients that underwent a FRC–BG cranioplasty. The treatment outcome was good both in adult and pediatric patients. A number of conventional complications related to cranioplasty were observed. In the third study, a retrospective outcome evaluation of 100 cranioplasty procedures performed in Turku University Hospital between years 2002–2012 was conducted. The experimental fourth study was conducted to test the load-bearing capacity and fracture behavior of FRC–BG implants under static loading. The interconnective bars in the implant structure markedly increased the load-bearing capacity of the implant. A loading test did not demonstrate any protrusions of glass fibers or fiber cut. The fracture type was buckling and delamination. In this study, a postoperative complication requiring a reoperation or removal of the cranioplasty material was observed in one out of five cranioplasty patients. The treatment outcomes of cranioplasty performed with different synthetic materials did not show significant difference when compared with autograft. The FRC–BG implant was demonstrated to be safe and biocompatible biomaterial for large cranial bone defect reconstructions in adult and pediatric patients.
Resumo:
Pan bread samples available in the Brazilian market were evaluated for their physicochemical and sensory characteristics. Twelve pan breads, seven white and five whole grain breads, were evaluated. Moisture, water activity (Aw), firmness, and color (L*, a*, b*) of the crumb were evaluated on the first, fourth, seventh, and tenth days after purchasing the breads. Specific volume was evaluated on the first day of analysis with averages of 4.72 and 4.70 mL/g for the white and whole grain breads, respectively. The average results on the first day of analysis were: 37.03% and 41.23% moisture, 0.954 and 0.966 Aw, 276.27 and 267.83 gf firmness, 74.73 and 64.45 L* values, 0.37 and 3.85 a* values, and 15.51 and 18.98 b* values for the white and whole grain breads, respectively. The samples showed an increase in firmness, reduction in moisture and Aw, and no color changes over time. A survey conducted prior to the acceptance test showed that the three most important factors influencing purchase were taste (19.6%), tenderness (16.8%), and expiration date of the product (14.3%). The results showed that 37.2% of the panelists preferred white bread, 62.8% preferred bread with fibers, and 82.6% would probably or definitely buy white bread with fibers.
Resumo:
The objective of this work was to study the effect of adding wheat fiber and partial pork back fat on the quality characteristics of bologna sausage. The compound central rotating design was used with treatments containing fixed levels of inulin (5%) and oat fiber (1%) and variable levels of wheat fiber (0-4%) and pork back fat (0-10%). The pH and protein were similar in all the treatments, the fat was lower than the control treatment and the moisture content was higher than the control treatment (CF) without fibers. The wheat fiber increased the hardness and reduced cohesiveness and scores were given for overall impression. We found that it was possible to prepare low-fat bologna sausage with the addition of 6.58% fiber (5% inulin, 1% oat fiber and 0.58% wheat fiber), whilst retaining good sensory acceptability, thus reducing the pork back fat levels by between 25 and 42.75%.