994 resultados para wet deposition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on graphene-passivated ferromagnetic electrodes (GPFE) for spin devices. GPFE are shown to act as spin-polarized oxidation-resistant electrodes. The direct coating of nickel with few layer graphene through a readily scalable chemical vapor deposition (CVD) process allows the preservation of an unoxidized nickel surface upon air exposure. Fabrication and measurement of complete reference tunneling spin valve structures demonstrate that the GPFE is maintained as a spin polarizer and also that the presence of the graphene coating leads to a specific sign reversal of the magneto-resistance. Hence, this work highlights a novel oxidation-resistant spin source which further unlocks low cost wet chemistry processes for spintronics devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stellite 6® powders were deposited on carbon steel using Supersonic Laser Deposition. The microstructure and performance of the coatings were examined using SEM, optical microscopy, EDS, XRD, microhardness testing and pin-on-disc wear testing. The results showed that the microstructure and wear behaviour of the most successful SLD deposition conditions with N2 at a pressure of 30bar, a temperature of 450°C and a deposition power of 1.5kW were compared with that of optimised laser cladding. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The invention provides a multilayer electronic device having electrodes, formed on a laterally extending first layer, the lateral position of each of at least two adjacent electrodes being defined by a channel in the first layer. Each channel is adjacent a deposition region, the material which forms each electrode substantially covering the deposition region to form a continuous conductive structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep ocean sediments off the west coast of Africa exhibit a peculiar undrained strength profile in the form of a crust, albeit of exceptionally high water content, overlying normally consolidated clay. Hot-oil pipelines are installed into these crustal sediments, so their origins and characteristics are of great interest to pipeline designers. This paper provides evidence for the presence of burrowing invertebrates in crust material, and for the way sediment properties are modified through their creation of burrows, and through the deposition of faecal pellets. A variety of imaging techniques are used to make these connections, including photography, scanning electron microscopy and X-ray computer tomography. However, the essential investigative technology is simply the wet-sieving of natural cores, which reveals that up to 60% by dry mass of the crustal material can consist of smooth, highly regular, sand-sized capsules that have been identified as the faecal pellets of invertebrates such as polychaetes. Mechanical tests reveal that these pellets are quite robust under effective stresses of the order of 10 kPa, acting like sand grains within a matrix of fines. Their abundance correlates closely with the measured strength of the crust. While this can easily be accepted in the context of a pellet fraction as high as 60%, the question arises how a smaller proportion of pellets, such as 20%, is apparently able to enhance significantly the strength of a sediment that otherwise appears to be normally consolidated. A hypothesis is suggested based on the composition of the matrix of fines around the pellets. These appear to consist of agglomerates of clay platelets, which may be the result of the breakdown of pellets by other organisms. Their continued degradation at depths in excess of 1 m is taken to explain the progressive loss of crustal strength thereafter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tantalum-oxide thin films are shown to catalyse single- and multi-walled carbon nanotube growth by chemical vapour deposition. A low film thickness, the nature of the support material (best results with SiO2) and an atmospheric process gas pressure are of key importance for successful nanotube nucleation. Strong material interactions, such as silicide formation, inhibit nanotube growth. In situ X-ray photoelectron spectroscopy indicates that no catalyst reduction to Ta-metal or Ta-carbide occurs during our nanotube growth conditions and that the catalytically active phase is the Ta-oxide phase. Such a reduction-free oxide catalyst can be technologically advantageous. © 2013 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

YBa 2Cu 3O 7-δ thick films have been deposited onto Ag substrates by the Electrophoretic Deposition (EPD) technique. Different microstructures and electrical behaviours were observed depending on the starting powder. Coatings prepared from commercial powder displayed significant porosity and the superconducting transition width was found to be magnetic-field dependent. Films produced from home-made coprecipitated powder are denser but contain some secondary phases. No dependence of the resistive transition as a function of magnetic field (H 20 Oe) was observed in that case. © 2006 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the preparation conditions of YBa2Cu3O7 polycrystalline superconducting tapes by a sol-gel deposition technique. We present some discussion on the compatibility between the nature of the substrate, the use of a buffer layer, and the conditions used to prepare appropriate superconducting YBa2Cu3O7 materials. We report also on the microstructural characterizations performed in order to evaluate the crystallites size, degree of orientation and connectivity. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: