988 resultados para wave equations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical analysis of the three currently popular microscopic theories of solvation dynamics, namely, the dynamic mean spherical approximation (DMSA), the molecular hydrodynamic theory (MHT), and the memory function theory (MFT) is carried out. It is shown that in the underdamped limit of momentum relaxation, all three theories lead to nearly identical results when the translational motions of both the solute ion and the solvent molecules are neglected. In this limit, the theoretical prediction is in almost perfect agreement with the computer simulation results of solvation dynamics in the model Stockmayer liquid. However, the situation changes significantly in the presence of the translational motion of the solvent molecules. In this case, DMSA breaks down but the other two theories correctly predict the acceleration of solvation in agreement with the simulation results. We find that the translational motion of a light solute ion can play an important role in its own solvation. None of the existing theories describe this aspect. A generalization of the extended hydrodynamic theory is presented which, for the first time, includes the contribution of solute motion towards its own solvation dynamics. The extended theory gives excellent agreement with the simulations where solute motion is allowed. It is further shown that in the absence of translation, the memory function theory of Fried and Mukamel can be recovered from the hydrodynamic equations if the wave vector dependent dissipative kernel in the hydrodynamic description is replaced by its long wavelength value. We suggest a convenient memory kernel which is superior to the limiting forms used in earlier descriptions. We also present an alternate, quite general, statistical mechanical expression for the time dependent solvation energy of an ion. This expression has remarkable similarity with that for the translational dielectric friction on a moving ion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An exact representation of N-wave solutions for the non-planar Burgers equation u(t) + uu(x) + 1/2ju/t = 1/2deltau(xx), j = m/n, m < 2n, where m and n are positive integers with no common factors, is given. This solution is asymptotic to the inviscid solution for Absolute value of x < square-root (2Q0 t), where Q0 is a function of the initial lobe area, as lobe Reynolds number tends to infinity, and is also asymptotic to the old age linear solution, as t tends to infinity; the formulae for the lobe Reynolds numbers are shown to have the correct behaviour in these limits. The general results apply to all j = m/n, m < 2n, and are rather involved; explicit results are written out for j = 0, 1, 1/2, 1/3 and 1/4. The case of spherical symmetry j = 2 is found to be 'singular' and the general approach set forth here does not work; an alternative approach for this case gives the large time behaviour in two different time regimes. The results of this study are compared with those of Crighton & Scott (1979).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simplified analysis is employed to handle a class of singular integro-differential equations for their solutions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress wave characteristics are drastically altered by joints and other inhomogenities. This paper addresses the effect of an open joint on stress wave transmission. An elastodynamic analysis is developed to supplement and explain some recent observations by Fourney and Dick(1995) on open as well as filled joints. The analytical model developed here assuming spherical symmetry can be extended to filled joints between dissimilar media, but results are presented only for open joints separating identical materials. As a special case, stress wave transmission across a joint with no gap is also addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. Thus, the study of these waves is an important biophysical problem. We present a systematic study of the combined effects of muscle-fiber rotation and inhomogeneities on scroll-wave dynamics in the TNNP (ten Tusscher Noble Noble Panfilov) model for human cardiac tissue. In particular, we use the three-dimensional TNNP model with fiber rotation and consider both conduction and ionic inhomogeneities. We find that, in addition to displaying a sensitive dependence on the positions, sizes, and types of inhomogeneities, scroll-wave dynamics also depends delicately upon the degree of fiber rotation. We find that the tendency of scroll waves to anchor to cylindrical conduction inhomogeneities increases with the radius of the inhomogeneity. Furthermore, the filament of the scroll wave can exhibit drift or meandering, transmural bending, twisting, and break-up. If the scroll-wave filament exhibits weak meandering, then there is a fine balance between the anchoring of this wave at the inhomogeneity and a disruption of wave-pinning by fiber rotation. If this filament displays strong meandering, then again the anchoring is suppressed by fiber rotation; also, the scroll wave can be eliminated from most of the layers only to be regenerated by a seed wave. Ionic inhomogeneities can also lead to an anchoring of the scroll wave; scroll waves can now enter the region inside an ionic inhomogeneity and can display a coexistence of spatiotemporal chaos and quasi-periodic behavior in different parts of the simulation domain. We discuss the experimental implications of our study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model has been developed for predicting the performance of rotating arcs in SF6 gas by considering the energy balance and force balance equations. The finite difference technique has been adopted for the computer simulation of the arc characteristics. This method helps in considering the spatial variation of the transport and radiative properties of the arc. All the three heat loss mechanisms-conduction, convection, and radiation-have been considered. Results obtained over a 10 ms (half cycle of 50 Hz wave) current flow period for 1.4 kA (peak) and 4.2 kA (peak), show that the proposed arc model gives the expected behavior of the arc over the range of currents studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The general equation for one-dimensional wave propagation at low flow Mach numbers (M less-than-or-equals, slant0·2) is derived and is solved analytically for conical and exponential shapes. The transfer matrices are derived and shown to be self-consistent. Comparison is also made with the relevant data available in the literature. The transmission loss behaviour of conical and exponential pipes, and mufflers involving these shapes, are studied. Analytical expressions of the same are given for the case of a stationary medium. The mufflers involving conical and exponential pipes are shown to be inferior to simple expansion chambers (of similar dimensions) at higher frequencies from the point of view of noise abatement, as was observed earlier experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic photonic switching elements of practical importance are outlined. A detailed comparative study of photonic switching architectures is presented both for guided wave fabrics and free-space fabrics. The required equations for comparative study are obtained, after considering the parameters like bend losses, effects of waveguide crossings, etc. The potential areas of application of photonic switching are pointed out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SAW matched filter is commonly used in spread spectrum communication receivers in order to maximize the SNR prior to detection, At times the receiver would be a mobile one while the signal is processed at the IF level, In that case frequency deviations due to Doppler shift or temperature dependence of the acoustic medium used for SAW device would, severely effect it's performance, The impact of these errors on the receiver performance is analyzed on a generalised basis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aerodynamics of the blast wave produced by laser ablation is studied using the piston analogy. The unsteady one-dimensional gasdynamic equations governing the flow an solved under assumption of self-similarity. The solutions are utilized to obtain analytical expressions for the velocity, density, pressure and temperature distributions. The results predict. all the experimentally observed features of the laser produced blast waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wave pipelining is a design technique for increasing the throughput of a digital circuit or system without introducing pipelining registers between adjacent combinational logic blocks in the circuit/system. However, this requires balancing of the delays along all the paths from the input to the output which comes the way of its implementation. Static CMOS is inherently susceptible to delay variation with input data, and hence, receives a low priority for wave pipelined digital design. On the other hand, ECL and CML, which are amenable to wave pipelining, lack the compactness and low power attributes of CMOS. In this paper we attempt to exploit wave pipelining in CMOS technology. We use a single generic building block in Normal Process Complementary Pass Transistor Logic (NPCPL), modeled after CPL, to achieve equal delay along all the propagation paths in the logic structure. An 8×8 b multiplier is designed using this logic in a 0.8 ?m technology. The carry-save multiplier architecture is modified suitably to support wave pipelining, viz., the logic depth of all the paths are made identical. The 1 mm×0.6 mm multiplier core supports a throughput of 400 MHz and dissipates a total power of 0.6 W. We develop simple enhancements to the NPCPL building blocks that allow the multiplier to sustain throughputs in excess of 600 MHz. The methodology can be extended to introduce wave pipelining in other circuits as well

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using intensity autocorrelation of multiply scattered light, we show that the increase in interparticle interaction in dense, binary colloidal fluid mixtures of particle diameters 0.115µm and 0.089µm results in freezing into a crystalline phase at volume fraction? of 0.1 and into a glassy state at?=0.2. The functional form of the field autocorrelation functiong (1)(t) for the binary fluid phase is fitted to exp[??(6k 0 2 D eff t)1/2] wherek 0 is the magnitude of the incident light wavevector and? is a parameter inversely proportional to the photon transport mean free pathl*. TheD eff is thel* weighted average of the individual diffusion coefficients of the pure species. Thel* used in calculatingD eff was computed using the Mie theory. In the solid (crystal or glass) phase, theg (1)(t) is fitted (only with a moderate success) to exp[??(6k 0 2 W(t))1/2] where the mean-squared displacementW(t) is evaluated for a harmonically bound overdamped Brownian oscillator. It is found that the fitted parameter? for both the binary and monodisperse suspensions decreases significantly with the increase of interparticle interactions. This has been justified by showing that the calculated values ofl* in a monodisperse suspension using Mie theory increase very significantly with the interactions incorporated inl* via the static structure factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic vibration in the Carbon Nanotubes (CNTs) gives rise to non-local interactions. In this paper, an expression for the non-local scaling parameter is derived as a function of the geometric and electronic properties of the rolled graphene sheet in single-walled CNTs. A self-consistent method is developed for the linearization of the problem of ultrasonic wave propagation in CNTs. We show that (i) the general three-dimensional elastic problem leads to a single non-local scaling parameter (e(0)), (ii) e(0) is almost constant irrespective of chirality of CNT in the case of longitudinal wave propagation, (iii) e(0) is a linear function of diameter of CNT for the case of torsional mode of wave propagation, (iv) e(0) in the case of coupled longitudinal-torsional modes of wave propagation, is a function which exponentially converges to that of axial mode at large diameters and to torsional mode at smaller diameters. These results are valid in the long-wavelength limit. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that the fluctuation-dissipation theorem is satisfied by the solutions of a general set of nonlinear Langevin equations with a quadratic free-energy functional (constant susceptibility) and field-dependent kinetic coefficients, provided the kinetic coefficients satisfy the Onsager reciprocal relations for the irreversible terms and the antisymmetry relations for the reversible terms. The analysis employs a perturbation expansion of the nonlinear terms, and a functional integral calculation of the correlation and response functions, and it is shown that the fluctuation-dissipation relation is satisfied at each order in the expansion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel technique to generate forward phase conjugate wave by two-wave mixing (TWM) in photorefractive iron-doped lithium niobate crystal has been demonstrated. An optical beam from a positive transparency was forward phase conjugated by TWM technique. The experimental scheme was then extended to a specific interferometric application.