994 resultados para volume algorithm
Resumo:
Purpose: Recent studies showed that pericardial fat was independently correlated with the development of coronary artery disease (CAD). The mechanism remains unclear. We aimed at assessing a possible relationship between pericardial fat volume and endothelium-dependent coronary vasomotion, a surrogate of future cardiovascular events.Methods: Fifty healthy volunteers without known CAD or cardiovascular risk factors (CRF) were enrolled. They all underwent a dynamic Rb- 82 cardiac PET/CT to quantify myocardial blood flow (MBF) at rest, during MBF response to cold pressure test (CPT-MBF) and adenosine stress. Pericardial fat volume (PFV) was measured using a 3D volumetric CT method and common biological CRF (glucose and insulin levels, HOMA-IR, cholesterol, triglyceride, hs-CRP). Relationships between MBF response to CPT, PFV and other CRF were assessed using non-parametric Spearman correlation and multivariate regression analysis of variables with significant correlation on univariate analysis (Stata 11.0).Results: All of the 50 participants had normal MBF response to adenosine (2.7±0.6 mL/min/g; 95%CI: 2.6−2.9) and myocardial flow reserve (2.8±0.8; 95%CI: 2.6−3.0) excluding underlying CAD. Simple regression analysis revealed a significant correlation between absolute CPTMBF and triglyceride level (rho = −0.32, p = 0.024) fasting blood insulin (rho = −0.43, p = 0.0024), HOMA-IR (rho = −0.39, p = 0.007) and PFV (rho = −0.52, p = 0.0001). MBF response to adenosine was only correlated with PFV (rho = −0.32, p = 0.026). On multivariate regression analysis PFV emerged as the only significant predictor of MBF response to CPT (p = 0.002).Conclusion: PFV is significantly correlated with endothelium-dependent coronary vasomotion. High PF burden might negatively influence MBF response to CPT, as well as to adenosine stress, even in persons with normal hyperemic myocardial perfusion imaging, suggesting a link between PF and future cardiovascular events. While outside-to-inside adipokines secretion through the arterial wall has been described, our results might suggest an effect upon NO-dependent and -independent vasodilatation. Further studies are needed to elucidate this mechanism.
Resumo:
The primary goal of this project is to demonstrate the accuracy and utility of a freezing drizzle algorithm that can be implemented on roadway environmental sensing systems (ESSs). The types of problems related to the occurrence of freezing precipitation range from simple traffic delays to major accidents that involve fatalities. Freezing drizzle can also lead to economic impacts in communities with lost work hours, vehicular damage, and downed power lines. There are means for transportation agencies to perform preventive and reactive treatments to roadways, but freezing drizzle can be difficult to forecast accurately or even detect as weather radar and surface observation networks poorly observe these conditions. The detection of freezing precipitation is problematic and requires special instrumentation and analysis. The Federal Aviation Administration (FAA) development of aircraft anti-icing and deicing technologies has led to the development of a freezing drizzle algorithm that utilizes air temperature data and a specialized sensor capable of detecting ice accretion. However, at present, roadway ESSs are not capable of reporting freezing drizzle. This study investigates the use of the methods developed for the FAA and the National Weather Service (NWS) within a roadway environment to detect the occurrence of freezing drizzle using a combination of icing detection equipment and available ESS sensors. The work performed in this study incorporated the algorithm developed initially and further modified for work with the FAA for aircraft icing. The freezing drizzle algorithm developed for the FAA was applied using data from standard roadway ESSs. The work performed in this study lays the foundation for addressing the central question of interest to winter maintenance professionals as to whether it is possible to use roadside freezing precipitation detection (e.g., icing detection) sensors to determine the occurrence of pavement icing during freezing precipitation events and the rates at which this occurs.
Resumo:
To date there have been few investigations of the substructures in low-volume road (LVR) bridges. Steel sheet piling has the potential to provide an economical alternative to concrete bridge abutments, but it needs investigation with regard to vertical and lateral load resistance, construction methods, and performance monitoring. The objectives of this project were to develop a design approach for sheet pile bridge abutments for short-span low-volume bridges, formulate an instrumentation and monitoring plan to evaluate performance of sheet pile abutment systems, and understand the cost and construction effort associated with building the sheet pile bridge abutment demonstration project. Three demonstration projects (Boone, Blackhawk, and Tama Counties) were selected for the design, construction, and monitoring of sheet pile abutments bridges. Each site was unique and required site-specific design and instrumentation monitoring. The key findings from this study include the following: (1) sheet pile abutment bridges provide an effective solution for LVR bridges, (2) the measured stresses and deflection were different from the assumed where the differences reflect conservatism in the design and the complex field conditions, and (3) additional research is needed to optimize the design.
Resumo:
Iowa has about 22,936 bridges on low-volume roads (LVRs). Based on the National Bridge Inventory data, 22 percent of the LVR bridges in Iowa are structurally deficient, while 5 percent of them are functionally obsolete. The substructure components (abutment and foundation elements) are known to be contributing factors for some of these poor ratings. Steel sheet piling was identified as a possible long-term option for LVR bridge substructures; but, due to lack of experience, Iowa needed investigation with regard to vertical and lateral load resistance, construction methods, design methodology, and load test performance. This project was initiated in January 2007 to investigate use of sheet pile abutments. *************Tech Transfer Summary. For full report see: http://publications.iowa.gov/id/eprint/14832*************
Resumo:
The Institute for Transportation (InTrans) at Iowa State University completed work on an in-depth study of crash history on lowvolume, rural roads in Iowa in December 2010. Results indicated that unpaved roads with traffic volumes greater than 100 vehicles per day (vpd) exhibit significantly higher crash frequencies, rates, and densities than any other class of low-volume road examined, paved or unpaved. The total mileage for this class of roadway in Iowa is only about 4,400 miles, spread over 99 counties in the state, which is certainly a manageable number of miles for individual rural agencies. The purpose of this study was to identify and examine several unpaved, local road segments with higher than average crash frequencies, select and undertake potentially-beneficial mitigation, and evaluate the results as time allowed. A variety of low-cost options were considered, including engineering improvements, enhanced efforts by law enforcement, and educational initiatives. Using input, active support, and participation from local agencies and state and Federal safety advocates, the study afforded a unique opportunity to examine useful tools for local rural agencies to utilize in addressing safety on this particular type of roadway.
Resumo:
The Institute for Transportation (InTrans) at Iowa State University completed work on an in-depth study of crash history on lowvolume, rural roads in Iowa in December 2010. Results indicated that unpaved roads with traffic volumes greater than 100 vehicles per day (vpd) exhibit significantly higher crash frequencies, rates, and densities than any other class of low-volume road examined, paved or unpaved. The total mileage for this class of roadway in Iowa is only about 4,400 miles, spread over 99 counties in the state, which is certainly a manageable number of miles for individual rural agencies. The purpose of this study was to identify and examine several unpaved, local road segments with higher than average crash frequencies, select and undertake potentially-beneficial mitigation, and evaluate the results as time allowed. A variety of low-cost options were considered, including engineering improvements, enhanced efforts by law enforcement, and educational initiatives. Using input, active support, and participation from local agencies and state and Federal safety advocates, the study afforded a unique opportunity to examine useful tools for local rural agencies to utilize in addressing safety on this particular type of roadway.