949 resultados para vector addition systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reconfigurable HW can be used to build a hardware multitasking system where tasks can be assigned to the reconfigurable HW at run-time according to the requirements of the running applications. Normally the execution in this kind of systems is controlled by an embedded processor. In these systems tasks are frequently represented as subtask graphs, where a subtask is the basic scheduling unit that can be assigned to a reconfigurable HW. In order to control the execution of these tasks, the processor must manage at run-time complex data structures, like graphs or linked list, which may generate significant execution-time penalties. In addition, HW/SW communications are frequently a system bottleneck. Hence, it is very interesting to find a way to reduce the run-time SW computations and the HW/SW communications. To this end we have developed a HW execution manager that controls the execution of subtask graphs over a set of reconfigurable units. This manager receives as input a subtask graph coupled to a subtask schedule, and guarantees its proper execution. In addition it includes support to reduce the execution-time overhead due to reconfigurations. With this HW support the execution of task graphs can be managed efficiently generating only very small run-time penalties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reconfigurable hardware can be used to build a multitasking system where tasks are assigned to HW resources at run-time according to the requirements of the running applications. These tasks are frequently represented as direct acyclic graphs and their execution is typically controlled by an embedded processor that schedules the graph execution. In order to improve the efficiency of the system, the scheduler can apply prefetch and reuse techniques that can greatly reduce the reconfiguration latencies. For an embedded processor all these computations represent a heavy computational load that can significantly reduce the system performance. To overcome this problem we have implemented a HW scheduler using reconfigurable resources. In addition we have implemented both prefetch and replacement techniques that obtain as good results as previous complex SW approaches, while demanding just a few clock cycles to carry out the computations. We consider that the HW cost of the system (in our experiments 3% of a Virtex-II PRO xc2vp30 FPGA) is affordable taking into account the great efficiency of the techniques applied to hide the reconfiguration latency and the negligible run-time penalty introduced by the scheduler computations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de dout. Ciências e Tecnologias do Ambiente, Faculdade de Ciências do Mar e do Ambiente, Univ. do Algarve, 2004

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current industry proposals for Hardware Transactional Memory (HTM) focus on best-effort solutions (BE-HTM) where hardware limits are imposed on transactions. These designs may show a significant performance degradation due to high contention scenarios and different hardware and operating system limitations that abort transactions, e.g. cache overflows, hardware and software exceptions, etc. To deal with these events and to ensure forward progress, BE-HTM systems usually provide a software fallback path to execute a lock-based version of the code. In this paper, we propose a hardware implementation of an irrevocability mechanism as an alternative to the software fallback path to gain insight into the hardware improvements that could enhance the execution of such a fallback. Our mechanism anticipates the abort that causes the transaction serialization, and stalls other transactions in the system so that transactional work loss is mini- mized. In addition, we evaluate the main software fallback path approaches and propose the use of ticket locks that hold precise information of the number of transactions waiting to enter the fallback. Thus, the separation of transactional and fallback execution can be achieved in a precise manner. The evaluation is carried out using the Simics/GEMS simulator and the complete range of STAMP transactional suite benchmarks. We obtain significant performance benefits of around twice the speedup and an abort reduction of 50% over the software fallback path for a number of benchmarks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective for physics based modeling of the power converter components is to design the whole converter with respect to physical and operational constraints. Therefore, all the elements and components of the energy conversion system are modeled numerically and combined together to achieve the whole system behavioral model. Previously proposed high frequency (HF) models of power converters are based on circuit models that are only related to the parasitic inner parameters of the power devices and the connections between the components. This dissertation aims to obtain appropriate physics-based models for power conversion systems, which not only can represent the steady state behavior of the components, but also can predict their high frequency characteristics. The developed physics-based model would represent the physical device with a high level of accuracy in predicting its operating condition. The proposed physics-based model enables us to accurately develop components such as; effective EMI filters, switching algorithms and circuit topologies [7]. One of the applications of the developed modeling technique is design of new sets of topologies for high-frequency, high efficiency converters for variable speed drives. The main advantage of the modeling method, presented in this dissertation, is the practical design of an inverter for high power applications with the ability to overcome the blocking voltage limitations of available power semiconductor devices. Another advantage is selection of the best matching topology with inherent reduction of switching losses which can be utilized to improve the overall efficiency. The physics-based modeling approach, in this dissertation, makes it possible to design any power electronic conversion system to meet electromagnetic standards and design constraints. This includes physical characteristics such as; decreasing the size and weight of the package, optimized interactions with the neighboring components and higher power density. In addition, the electromagnetic behaviors and signatures can be evaluated including the study of conducted and radiated EMI interactions in addition to the design of attenuation measures and enclosures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents the development of an in-plane vertical micro-coaxial probe using bulk micromachining technique for high frequency material characterization. The coaxial probe was fabricated in a silicon substrate by standard photolithography and a deep reactive ion etching (DRIE) technique. The through-hole structure in the form of a coaxial probe was etched and metalized with a diluted silver paste. A co-planar waveguide configuration was integrated with the design to characterize the probe. The electrical and RF characteristics of the coaxial probe were determined by simulating the probe design in Ansoft’s High Frequency Structure Simulator (HFSS). The reflection coefficient and transducer gain performance of the probe was measured up to 65 GHz using a vector network analyzer (VNA). The probe demonstrated excellent results over a wide frequency band, indicating its ability to integrate with millimeter wave packaging systems as well as characterize unknown materials at high frequencies. The probe was then placed in contact with 3 materials where their unknown permittivities were determined. To accomplish this, the coaxial probe was placed in contact with the material under test and electromagnetic waves were directed to the surface using the VNA, where its reflection coefficient was then determined over a wide frequency band from dc-to -65GHz. Next, the permittivity of each material was deduced from its measured reflection coefficients using a cross ratio invariance coding technique. The permittivity results obtained when measuring the reflection coefficient data were compared to simulated permittivity results and agreed well. These results validate the use of the micro-coaxial probe to characterize the permittivity of unknown materials at high frequencies up to 65GHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the liquid-liquid and solid-liquid phase behaviour of ten aqueous pseudo-binary and three binary systems containing polyethylene glycol (PEG) 2050, polyethylene glycol 35000, aniline, N,N-dimethylaniline and water, in the temperature range 298.15-350.15 K and at ambient pressure of 0.1 MPa, was studied. The obtained temperature-composition phase diagrams showed that the only functional co-solvent was PEG2050 for aniline in water, while PEG35000 even showed a clear anti-solvent effect in the N,N-dimethylaniline aqueous system. The experimental solid-liquid equilibria (SLE) data have been correlated by the non-random two-liquid (NRTL) model, and the correlation results are in accordance with the experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power system policies are broadly on track to escalate the use of renewable energy resources in electric power generation. Integration of dispersed generation to the utility network not only intensifies the benefits of renewable generation but also introduces further advantages such as power quality enhancement and freedom of power generation for the consumers. However, issues arise from the integration of distributed generators to the existing utility grid are as significant as its benefits. The issues are aggravated as the number of grid-connected distributed generators increases. Therefore, power quality demands become stricter to ensure a safe and proper advancement towards the emerging smart grid. In this regard, system protection is the area that is highly affected as the grid-connected distributed generation share in electricity generation increases. Islanding detection, amongst all protection issues, is the most important concern for a power system with high penetration of distributed sources. Islanding occurs when a portion of the distribution network which includes one or more distributed generation units and local loads is disconnected from the remaining portion of the grid. Upon formation of a power island, it remains energized due to the presence of one or more distributed sources. This thesis introduces a new islanding detection technique based on an enhanced multi-layer scheme that shows superior performance over the existing techniques. It provides improved solutions for safety and protection of power systems and distributed sources that are capable of operating in grid-connected mode. The proposed active method offers negligible non-detection zone. It is applicable to micro-grids with a number of distributed generation sources without sacrificing the dynamic response of the system. In addition, the information obtained from the proposed scheme allows for smooth transition to stand-alone operation if required. The proposed technique paves the path towards a comprehensive protection solution for future power networks. The proposed method is converter-resident and all power conversion systems that are operating based on power electronics converters can benefit from this method. The theoretical analysis is presented, and extensive simulation results confirm the validity of the analytical work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a real-time optimal control technique for non-linear plants is proposed. The control system makes use of the cell-mapping (CM) techniques, widely used for the global analysis of highly non-linear systems. The CM framework is employed for designing approximate optimal controllers via a control variable discretization. Furthermore, CM-based designs can be improved by the use of supervised feedforward artificial neural networks (ANNs), which have proved to be universal and efficient tools for function approximation, providing also very fast responses. The quantitative nature of the approximate CM solutions fits very well with ANNs characteristics. Here, we propose several control architectures which combine, in a different manner, supervised neural networks and CM control algorithms. On the one hand, different CM control laws computed for various target objectives can be employed for training a neural network, explicitly including the target information in the input vectors. This way, tracking problems, in addition to regulation ones, can be addressed in a fast and unified manner, obtaining smooth, averaged and global feedback control laws. On the other hand, adjoining CM and ANNs are also combined into a hybrid architecture to address problems where accuracy and real-time response are critical. Finally, some optimal control problems are solved with the proposed CM, neural and hybrid techniques, illustrating their good performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transportation research makes a difference for Iowans and the nation. Implementation of cost effective research projects contributes to a transportation network that is safer, more efficient, and longer lasting. Working in cooperation with our partners from universities, industry, other states, and FHWA, as well as participation in the Transportation Research Board (TRB), provides benefits for every facet of the DOT. This allows us to serve our communities and the traveling public more effectively. Pooled fund projects allow leveraging of funds for higher returns on investments. In 2010, Iowa led fifteen active pooled fund studies, participated in twenty-two others, and was wrapping-up, reconciling, and closing out an additional 6 Iowa Led pooled fund studies. In addition, non-pooled fund SPR projects included approximately 20 continued, 9 new, and over a dozen reoccurring initiatives such as the technical transfer/training program. Additional research is managed and conducted by the Office of Traffic and Safety and other departments in the Iowa DOT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the context of the International Society for Knowledge Organization, we often consider knowledge organization systems to comprise catalogues, thesauri, and bibliothecal classification schemes – schemes for library arrangement. In recent years we have added ontologies and folksonomies to our sphere of study. In all of these cases it seems we are concerned with improving access to information. We want a good system.And much of the literature from the late 19th into the late 20th century took that as their goal – to analyze the world of knowledge and the structures of representing it as its objects of study; again, with the ethos for creating a good system. In most cases this meant we had to be correct in our assertions about the universe of knowledge and the relationships that obtain between its constituent parts. As a result much of the literature of knowledge organization is prescriptive – instructing designers and professionals how to build or use the schemes correctly – that is to maximize redundant success in accessing information.In 2005, there was a turn in some of the knowledge organization literature. It has been called the descriptive turn. This is in relation to the otherwise prescriptive efforts of researchers in KO. And it is the descriptive turn that makes me think of context, languages, and cultures in knowledge organization–the theme of this year’s conference.Work in the descriptive turn questions the basic assumptions about what we want to do when we create, implement, maintain, and evaluate knowledge organization systems. Following on these assumptions researchers have examined a wider range of systems and question the motivations behind system design. Online websites that allow users to curate their own collections are one such addition, for example Pinterest (cf., Feinberg, 2011). However, researchers have also looked back at other lineages of organizing to compare forms and functions. For example, encyclopedias, catalogues raisonnés, archival description, and winter counts designed and used by Native Americans.In this case of online curated collections, Melanie Feinberg has started to examine the craft of curation, as she calls it. In this line of research purpose, voice, and rhetorical stance surface as design considerations. For example, in the case of the Pinterest, users are able and encouraged to create boards. The process of putting together these boards is an act of curation in contemporary terminology. It is describing this craft that comes from the descriptive turn in KO.In the second case, when researchers in the descriptive turn look back at older and varied examples of knowledge organization systems, we are looking for a full inventory of intent and inspiration for future design. Encyclopedias, catalogues raisonnés, archival description, and works of knowledge organization in other cultures provide a rich world for the descriptive turn. And researchers have availed themselves of this.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We generalize the Liapunov convexity theorem's version for vectorial control systems driven by linear ODEs of first-order p = 1 , in any dimension d ∈ N , by including a pointwise state-constraint. More precisely, given a x ‾ ( ⋅ ) ∈ W p , 1 ( [ a , b ] , R d ) solving the convexified p-th order differential inclusion L p x ‾ ( t ) ∈ co { u 0 ( t ) , u 1 ( t ) , … , u m ( t ) } a.e., consider the general problem consisting in finding bang-bang solutions (i.e. L p x ˆ ( t ) ∈ { u 0 ( t ) , u 1 ( t ) , … , u m ( t ) } a.e.) under the same boundary-data, x ˆ ( k ) ( a ) = x ‾ ( k ) ( a ) & x ˆ ( k ) ( b ) = x ‾ ( k ) ( b ) ( k = 0 , 1 , … , p − 1 ); but restricted, moreover, by a pointwise state constraint of the type 〈 x ˆ ( t ) , ω 〉 ≤ 〈 x ‾ ( t ) , ω 〉 ∀ t ∈ [ a , b ] (e.g. ω = ( 1 , 0 , … , 0 ) yielding x ˆ 1 ( t ) ≤ x ‾ 1 ( t ) ). Previous results in the scalar d = 1 case were the pioneering Amar & Cellina paper (dealing with L p x ( ⋅ ) = x ′ ( ⋅ ) ), followed by Cerf & Mariconda results, who solved the general case of linear differential operators L p of order p ≥ 2 with C 0 ( [ a , b ] ) -coefficients. This paper is dedicated to: focus on the missing case p = 1 , i.e. using L p x ( ⋅ ) = x ′ ( ⋅ ) + A ( ⋅ ) x ( ⋅ ) ; generalize the dimension of x ( ⋅ ) , from the scalar case d = 1 to the vectorial d ∈ N case; weaken the coefficients, from continuous to integrable, so that A ( ⋅ ) now becomes a d × d -integrable matrix; and allow the directional vector ω to become a moving AC function ω ( ⋅ ) . Previous vectorial results had constant ω, no matrix (i.e. A ( ⋅ ) ≡ 0 ) and considered: constant control-vertices (Amar & Mariconda) and, more recently, integrable control-vertices (ourselves).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coffea sp. is cultivated in large areas, using both conventional and organic management. However, information about the sustainability of these two management systems is still deficient. The objective of the present study was to evaluate the physical properties of soil cultivated with Conilon coffee (C. canephora) under organic and conventional management. Two areas cultivated with Conilon coffee (under organic and conventional management) and a fragment of Atlantic forest, used as a reference, were selected for the experiment. Soil granulometry, hydraulic conductivity, water retention curve, resistance to penetration, porosity, optimal hydric interval, and other physical characteristics were measured at depths of 0 to 10 and 10 to 20 cm. The data was submitted to multivariate and descriptive statistical analyses. Higher similarity was observed between the soil cultivated with Conilon coffee under organic management and the Atlantic forest soil. Soil resistance to penetration at 10, 30, 100, 500 and 1500 kPa, macro porosity, density and total porosity were the main physical properties that differentiated both management systems studied. The non-use of agricultural machinery and the addition of organic matter may be the main reasons for higher soil sustainability observed under organic management when compared with the conventional system.