960 resultados para universal
Resumo:
Trabalho apresentado na Universidade Nacional do Chile, Santiago, em comemoração aos 900 anos da Universidade de Bolonha.
Resumo:
Inclui notas explicativas, bibliográficas e bibliografia
Resumo:
The universal phylogenetic tree not only spans all extant life, but its root and earliest branchings represent stages in the evolutionary process before modern cell types had come into being. The evolution of the cell is an interplay between vertically derived and horizontally acquired variation. Primitive cellular entities were necessarily simpler and more modular in design than are modern cells. Consequently, horizontal gene transfer early on was pervasive, dominating the evolutionary dynamic. The root of the universal phylogenetic tree represents the first stage in cellular evolution when the evolving cell became sufficiently integrated and stable to the erosive effects of horizontal gene transfer that true organismal lineages could exist.
Resumo:
The genes for the protein synthesis elongation factors Tu (EF-Tu) and G (EF-G) are the products of an ancient gene duplication, which appears to predate the divergence of all extant organismal lineages. Thus, it should be possible to root a universal phylogeny based on either protein using the second protein as an outgroup. This approach was originally taken independently with two separate gene duplication pairs, (i) the regulatory and catalytic subunits of the proton ATPases and (ii) the protein synthesis elongation factors EF-Tu and EF-G. Questions about the orthology of the ATPase genes have obscured the former results, and the elongation factor data have been criticized for inadequate taxonomic representation and alignment errors. We have expanded the latter analysis using a broad representation of taxa from all three domains of life. All phylogenetic methods used strongly place the root of the universal tree between two highly distinct groups, the archaeons/eukaryotes and the eubacteria. We also find that a combined data set of EF-Tu and EF-G sequences favors placement of the eukaryotes within the Archaea, as the sister group to the Crenarchaeota. This relationship is supported by bootstrap values of 60-89% with various distance and maximum likelihood methods, while unweighted parsimony gives 58% support for archaeal monophyly.