949 resultados para tungsten coil atomization
Resumo:
The main goal of this work was to produce nanosized ceramic materials of the family of the tungstates (tungstates of cerium and strontium), and test them for their catalytic activity in processes involving the transformation of methane (CH4). The methodology used for the synthesis of the ceramic powders involved the complexation combining EDTA-citrate. The materials characterization was performed using simple and differential thermogravimetry, x-ray diffraction, transmission electron microscopy, and energy dispersive spectroscopy (EDS). The microstructure analysis was performed using the refinement by the Rietveld method, and the crystallite size and distribution of the materials was elucidate by the Scherrer and Williamson-Hall methods. The conditions of the synthesis process for the three envisaged materials (SrWO4, SrWO4 using tungsten oxide concentrate as raw material, and Ce2(WO4)3) were adjusted to obtain a single phase crystalline material. The catalytic tests were carried out in the presence of methane and synthetic air, which is composed of 21% O2 and 79% N2. The analysis of the conversion of the reaction was done with the aid of an fourier transform infrared device (FTIR). The analysis showed that, structurally, the SrWO4 produced using raw materials of high and poor purity (99% and 92%, respectively) are similar. The ideal parameters of calcination, in the tested range, are temperature of 1000 °C and time of calcination 5 hours. For the Ce2(WO4)3, the ideal calcination time and are temperature 15 hours and 1000°C, respectively. The Williamson-Hall method provided two different distributions for the crystallite size of each material, whose values ranged between the nanometer and micrometer scales. According to method of Scherrer, all materials produced were composed of nanometric crystallites. The analyses of transmission electron microscopy confirmed the results obtained from the Williamson- Hall method for the crystallite size. The EDS showed an atomic composition for the metals in the SrWO4 that was different of the theoretical composition. With respect to the catalytic tests, all materials were found to be catalytically active, but the reaction process should be further studied and optimized.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the work described by this paper, we studied the development of a selective potassium ion sensor constituted of a carbon paste electrode modified (CPEM) with a novel KSr(2)Nb(2)O(15). The material KSr(2)Nb(2)O(15) is an oxide with the tetragonal tungsten bronze structure (TTB) type are in forefront both in the area of research as well as in industrial applications. The sensor response to potassium ions was linear in the concentration range 1.26 x 10(-5) at 1.62 x 10(-3) mol L(-1) (E (mV) = 32.7 + 51.1 log [K(+)]). The sensor based KSr(2)Nb(2)O(15), of the TTB-type presented very good potentiometric response, with a slope of 51.1 mV/dec (at 25 degrees C) and detection limit for the potassium ions of 7.27 x 10(-5) mol.L(-1)
Resumo:
The guava seed protein isolate ( PI) was obtained from the protein precipitation belonging to the class of the gluteline (Ip 4.5). The conditions for the preparation of the PI were determined by both the solubility curve and simultaneous thermogravimetry-differential thermal analysis (TG-DTA): pH 11.5, absence of NaCl and whiteners and T=( 25 +/- 3) degrees C. Under these conditions a yield of 77.0 +/- 0.4%, protein content of 94.2 +/- 0.3, ashes 0.50 +/- 0.05% and thermal stability, T= 200 degrees C, were obtained. The TG-DTA curves and the PI emulsification capacity study showed the presence of hydrophobic microdomains at pH 11.5 and 3.0 suggesting a random coil protein conformation and, to pH 10.0, an open protein conformation. The capacity of emulsification (CE), in the absence of NaCl, was verified for: 1 - pH 3.0 and 8.5, using the IP extracted at pH 10.0 and 11.5, CE >= 343 +/- 5 g of emulsified oil/g of protein; 2 - pH 6.60 just for the PI obtained at pH 11.5, CE >= 140 +/- 8 g of emulsified oil/g of protein.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Non-audio signals have been recorded in the flash ROM memory of a portable MP3 player, in WAV format file, to examine the possibility of using these cheap and small instruments as general-purpose portable data loggers. A 1200-Hz FM carrier modulated by the non-audio signal has replaced the microphone signal, while using the REC operating mode of the MP3 player, which triggers the voice recording function. The signal recovery was carried out by a PLL-based FM demodulator whose input is the FM signal captured in the coil leads of the MP3 player's earphone. Sinusoidal and electrocardiogram signals have been used in the system evaluation. Although the quality of low frequency signals needs improvement, overall the results indicate the viability of the proposal. Suggestions are made for improvements and extensions of the work.
Resumo:
Cold atmospheric plasma treatment of microorganisms and living tissues has become a popular topic in modern plasma physics and in medical science. The plasma is capable of bacterial inactivation and noninflammatory tissue modification, which makes it an attractive tool for treatment of skin diseases, open injuries and dental caries. Because of their enhanced plasma chemistry, Dielectric Barrier Discharges (DBDs) have been widely investigated for some emerging applications such as biological and chemical decontamination of media at ambient conditions. Despite the high breakdown voltage in air at atmospheric pressure, the average current of DBD discharges is low. Therefore, a DBD can be applied in direct contact with biological objects without causing any damage. In this work a 60 Hz DBD reactor, which generates cold atmospheric plasma inside Petri dishes with bacterial culture, is investigated. Samples of Staphylococcus aureus, a Gram-positive bacterium and Escherichia coil a Gram-negative bacterium were selected for this study. The bacterial suspensions were evenly spread on agar media planted in Petri dishes. The reactor electrodes were placed outside the Petri dish, thus eliminating the risk of samples microbial contamination. The covered Petri dish with agar medium in it serves as dielectric barrier during the treatment. The plasma processing was conducted at same discharge power (similar to 1.0 W) with different exposure time. Sterilization of E. coil and S. aureus was achieved for less than 20 min. Plasma induced structural damages of bacteria were investigated by Scanning Electron Microscopy. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Deposition of wear-resistant hard chromium plating leads to a decrease in the fatigue strength of the base material. Despite the effective protection against wear and corrosion, fatigue life and environmental requirements result in pressure to identify alternatives or to improve conventional chromium electroplating mechanical characteristics. An interesting, environmentally safer and cleaner alternative for the replacement of hard chronic plating is tungsten carbide thermal spray coating, applied by high velocity oxyfuel (HVOF) process.To improve the fatigue strength of aeronautical steel chromium electroplated, shot peening is a successfully used method. Multiple lacer systems of coatings are considered to have larger resistance to crack propagation in comparison with simple layer.The aim of this study was to analyze the effect of nickel underplate on the fatigue strength of hard chromium plated AISI 4340 steel in two mechanical conditions: HRc 39 and HRc 52.Rotating bending fatigue tests results indicate that the clectroless nickel plating underlayer is responsible for the increase in fatigue strength of AISI 4340 steel chromium electroplated. This behavior may be attributed to the largest toughness/ductility and compressive residual stresses which, probably, arrested or delayed the inicrocrack propagation from the hard chromium external layer. The compressive residual stress field (CRSF) induced by the electroplating process was determined by X-ray diffraction method. The evolution of fatigue strength compressive residual stress field CRSF and crack sources are discussed and analyzed by SEM. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
One of the most interesting alternatives for replacement of hard chrome plating is tungsten carbide thermal spray coating applied by the high velocity oxy-fuel (HVOF) process which presents a safer, cleaner and less expensive alternative to chromium plating. The objective of this research is to compare the influence of the tungsten carbide-17cobalt (WC- 17Co) coating applied by high velocity oxy fuel (HVOF) process with that of hard-chromium electroplating on the fatigue strength and abrasive wear of AISI 4340 steel.