861 resultados para transit efficiency


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The drug busulphan is known to be cytotoxic to migrating primordial germ cells (PGCs). A technique is described in which doses of 0, 25, 50 and 250 micrograms busulphan in 40 microliters sesame oil were injected into the yolk of White Leghorn eggs incubated for 0, 24, 48 and 72 h. The percentage survival values of these embryos showed that the older the embryo at the time of injection, the greater the survival. Increasing the dose of busulphan decreased the survival. The percentage of embryos showing abnormalities increased with higher doses of busulphan. The number of germ cells in histological sections from gonads of 16-day embryos was estimated and in embryos treated with 50 micrograms and 250 micrograms busulphan the number of germ cells was significantly less than in the controls. Eggs were injected with 50 micrograms busulphan at 24-30 h, and at 50-55 h the embryos received an intravascular injection of a germinal crescent cell suspension containing PGCs from Rhode Island Red embryos. Twenty hatchlings from these experiments were raised to sexual maturity. All these birds were fertile and half of the breeding groups producing offspring from the transferred germ cells at a rate of about 35% of the total. The technique would improve the efficiency of producing transgenic gametes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to test the impact of compost and Biochar, with or without earthworms, on the mobility and availability of metals, and on the growth of grass to re-vegetate contaminated soil from the Parys Mountain mining site, Anglesey. We also determined if the addition of earthworms compromises remediation efforts. In a laboratory experiment, contaminated soil (1343 mg Cu kg−1, 2511 mg Pb kg−1 and 262 mg Zn kg−1) was remediated with compost and/or Biochar. After 77 days Lumbricus terrestris L. earthworms were added to the treatment remediated with both compost and Biochar, and left for 28 days. L. terrestris was not able to survive in the Biochar, compost or unamended treatments. A germination and growth bioassay, using Agrostis capillaris (Common Bent) was then run on all treatments for 28 days. The combination of Biochar and compost decreased water soluble Cu (from 5.6 to 0.2 mg kg−1), Pb (0.17 to less than 0.007 mg kg−1) and Zn (3.3 to 0.05 mg kg−1) in the contaminated soil and increased the pH from 2.7 to 6.6. The addition of L. terrestris to this treatment had no effect on the concentration of the water soluble metals in the remediated soil. The compost was the only treatment that resulted in germination and growth of A. capillaris suitable for re-vegetation purposes. However, the combination of compost, Biochar (with or without L. terrestris) produced the lowest concentrations of Cu (8 mg kg−1) and Zn (36 mg kg−1) in the aboveground biomass, lower than the compost treatment (15 mgCu kg−1 and 126 mgZn kg−1). The addition of Biochar and compost both separately and as co-amendments was effective in reducing the mobility and availability of metals. The addition of L. terrestris did not re-mobilise previously sequestered metals.