917 resultados para tissue and cellular pharmacology
Resumo:
Energy balance exerts a critical influence on reproductive function. Leptin and insulin are among the metabolic factors signaling the nutritional status of an individual to the hypothalamus, and their role in the overall modulation of the activity of GnRH neurons is increasingly recognized. As such, they participate to a more generalized phenomenon: the signaling of peripheral metabolic changes to the central nervous system. The physiological importance that the interactions occurring between peripheral metabolic factors and the central nervous system bear for the control of food intake is increasingly recognized. The central mechanisms implicated are the focus of attention of very many research groups worldwide. We review here the experimental data that suggest that similar mechanisms are at play for the metabolic control of the neuroendocrine reproductive function. It is appearing that metabolic signals are integrated at the levels of first-order neurons equipped with the proper receptors, ant that these neurons send their signals towards hypothalamic GnRH neurons which constitute the integrative element of this network.
Resumo:
De novo lipogenesis and hypercaloric diets are thought to contribute to increased fat mass, particularly in abdominal fat depots. CB1 is highly expressed in adipose tissue, and CB1-mediated signalling is associated with stimulation of lipogenesis and diet-induced obesity, though its contribution to increasing fat deposition in adipose tissue is controversial. Lipogenesis is regulated by transcription factors such as liver X receptor (LXR), sterol-response element binding protein (SREBP) and carbohydrate-responsive-element-binding protein (ChREBP). We evaluated the role of CB1 in the gene expression of these factors and their target genes in relation to lipogenesis in the perirenal adipose tissue (PrAT) of rats fed a high-carbohydrate diet (HCHD) or a high-fat diet (HFD). Both obesity models showed an up-regulated gene expression of CB1 and Lxrα in this adipose pad. The Srebf-1 and ChREBP gene expressions were down-regulated in HFD but not in HCHD. The expression of their target genes encoding for lipogenic enzymes showed a decrease in diet-induced obesity and was particularly dramatic in HFD. In HCHD, CB1 blockade by AM251 reduced the Srebf-1 and ChREBP expression and totally abrogated the remnant gene expression of their target lipogenic enzymes. The phosphorylated form of the extracellular signal-regulated kinase (ERK-p), which participates in the CB1-mediated signalling pathway, was markedly present in the PrAT of obese rats. ERK-p was drastically repressed by AM251 indicating that CB1 is actually functional in PrAT of obese animals, though its activation loses the ability to stimulate lipogenesis in PrAT of obese rats. Even so, the remnant expression levels of lipogenic transcription factors found in HCHD-fed rats are still dependent on CB1 activity. Hence, in HCHD-induced obesity, CB1 blockade may help to further potentiate the reduction of lipogenesis in PrAT by means of inducing down-regulation of the ChREBP and Srebf-1 gene expression, and consequently in the expression of lipogenic enzymes.
Resumo:
OBJECTIVE We investigated the association between the proportion of long-chain n-3 polyunsaturated fatty acids (PUFA) in plasma phospholipids from blood samples drawn at enrollment and subsequent change in body weight. Sex, age, and BMI were considered as potential effect modifiers. METHOD A total of 1,998 women and men participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) were followed for a median of 4.9 years. The associations between the proportion of plasma phospholipid long-chain n-3 PUFA and change in weight were investigated using mixed-effect linear regression. RESULTS The proportion of long-chain n-3 PUFA was not associated with change in weight. Among all participants, the 1-year weight change was -0.7 g per 1% point higher long-chain n-3 PUFA level (95% confidence interval: -20.7 to 19.3). The results when stratified by sex, age, or BMI groups were not systematically different. CONCLUSION The results of this study suggest that the proportion of long-chain n-3 PUFA in plasma phospholipids is not associated with subsequent change in body weight within the range of exposure in the general population.
Resumo:
A major event during the growth period of oocytes in nonmammalian animals is the accumulation of yolk. The genes coding for the yolk protein precursor, known as vitallogenin, are well characterized in a few vertebrate and invertebrate species. Studies on the evolution of these genes and on the regulatory mechanisms involved in their time, tissue- and hormone-specific expression are presented and discussed in this review.
Resumo:
The role of the induction of oxidative stress as the mechanism of action of many antitumor drugs is acquiring an increasing interest. In such cases, the antitumor therapy success may be conditioned by the antioxidants present in our own body, which can be synthesized de novo (endogenous) or incorporated through the diet and nutritional supplements (exogenous). In this paper, we have reviewed different aspects of antioxidants, including their classification, natural sources, importance in diet, consumption of nutritional supplements, and the impact of antioxidants on health. Moreover, we have focused especially on the study of the interaction between antioxidants and antitumor therapy, considering both radiotherapy and chemotherapy. In this regard, we found that the convenience of administration of antioxidants during cancer treatment still remains a very controversial issue. In general terms, antioxidants could promote or suppress the effectiveness of antitumor treatment and even protect healthy tissues against damage induced by oxidative stress. The effects may depend on many factors discussed in the paper. These factors should be taken into consideration in order to achieve precise nutritional recommendations for patients. The evidence at the moment suggests that the supplementation or restriction of exogenous antioxidants during cancer treatment, as appropriate, could contribute to improving its efficiency.
Resumo:
The endocrine disruption hypothesis asserts that exposure to small amounts of some chemicals in the environment may interfere with the endocrine system and lead to harmful effects in wildlife and humans. Many of these chemicals may interact with members of the nuclear receptor superfamily. Peroxisome proliferator-activated receptors (PPARs) are such candidate members, which interact with many different endogenous and exogenous lipophilic compounds. More particularly, the roles of PPARs in lipid and carbohydrate metabolism raise the question of their activation by a sub-class of pollutants, tentatively named "metabolic disrupters". Phthalates are abundant environmental micro-pollutants in Europe and North America and may belong to this class. Mono-ethyl-hexyl-phthalate (MEHP), a metabolite of the widespread plasticizer di-ethyl-hexyl-phthalate (DEHP), has been found in exposed organisms and interacts with all three PPARs. A thorough analysis of its interactions with PPARgamma identified MEHP as a selective PPARgamma modulator, and thus a possible contributor to the obesity epidemic.
Resumo:
BACKGROUND: Plasmodium vivax circumsporozoite (PvCS) protein is a major sporozoite surface antigen involved in parasite invasion of hepatocytes and is currently being considered as vaccine candidate. PvCS contains a dimorphic central repetitive fragment flanked by conserved regions that contain functional domains. METHODS: We have developed a chimeric 137-mer synthetic polypeptide (PvCS-NRC) that includes the conserved region I and region II-plus and the two natural repeat variants known as VK210 and VK247. The antigenicity of PvCS-NRC was tested using human sera from PNG and Colombia endemic areas and its immunogenicity was confirmed in mice with different genetic backgrounds, the polypeptide formulated either in Alum or GLA-SE adjuvants was assessed in inbred C3H, CB6F1 and outbred ICR mice, whereas a formulation in Montanide ISA51 was tested in C3H mice. RESULTS: Antigenicity studies indicated that the chimeric peptide is recognized by a high proportion (60-70%) of residents of malaria-endemic areas. Peptides formulated with either GLA-SE or Montanide ISA51 adjuvants induced stronger antibody responses as compared with the Alum formulation. Sera from immunized mice as well as antigen-specific affinity purified human IgG antibodies reacted with sporozoite preparations in immunofluorescence and Western blot assays, and displayed strong in vitro inhibition of sporozoite invasion (ISI) into hepatoma cells. CONCLUSIONS: The polypeptide was recognized at high prevalence when tested against naturally induced human antibodies and was able to induce significant immunogenicity in mice. Additionally, specific antibodies were able to recognize sporozoites and were able to block sporozoite invasion in vitro. Further evaluation of this chimeric protein construct in preclinical phase e.g. in Aotus monkeys in order to assess the humoral and cellular immune responses as well as protective efficacy against parasite challenge of the vaccine candidate must be conducted.
Resumo:
Platelet-rich plasma (PRP) is a volume of plasma fraction of autologous blood having platelet concentrations above baseline whole-blood values due to processing and concentration. PRP is used in various surgical fields to enhance soft-tissue and bone healing by delivering supra-physiological concentrations of autologous platelets at the site of tissue damage. These preparations may provide a good cellular source of various growth factors and cytokines, and modulate tissue response to injury. Common clinically available materials for blood preparations combined with a two-step centrifugation protocol at 280g each, to ensure cellular component integrity, provided platelet preparations which were concentrated 2-3 fold over total blood values. Costs were shown to be lower than those of other methods which require specific equipment and high-cost disposables, while safety and traceability can be increased. PRP can be used for the treatment of wounds of all types including burns and also of split-thickness skin graft donor sites, which are frequently used in burn management. The procedure can be standardized and is easy to adapt in clinical settings with minimal infrastructure, thus enabling large numbers of patients to benefit from a form of cellular therapy.
Resumo:
Islet-brain 1 (IB1) is the human and rat homologue of JIP-1, a scaffold protein interacting with the c-Jun amino-terminal kinase (JNK). IB1 expression is mostly restricted to the endocrine pancreas and to the central nervous system. Herein, we explored the transcriptional mechanism responsible for this preferential islet and neuronal expression of IB1. A 731-bp fragment of the 5' regulatory region of the human MAPK8IP1 gene was isolated from a human BAC library and cloned upstream of a luciferase reporter gene. This construct drove high transcriptional activity in both insulin-secreting and neuron-like cells but not in unrelated cell lines. Sequence analysis of this promoter region revealed the presence of a neuron-restrictive silencer element (NRSE) known to bind repressor zinc finger protein REST. This factor is not expressed in insulin-secreting and neuron-like cells. By mobility shift assay, we confirmed that REST binds to the NRSE present in the IB1 promoter. Once transiently transfected in beta-cell lines, the expression vector encoding REST repressed IB1 transcriptional activity. The introduction of a mutated NRSE in the 5' regulating region of the IB1 gene abolished the repression activity driven by REST in insulin-secreting beta cells and relieved the low transcriptional activity of IB1 observed in unrelated cells. Moreover, transfection in non-beta and nonneuronal cell lines of an expression vector encoding REST lacking its transcriptional repression domain relieved IB1 promoter activity. Last, the REST-mediated repression of IB1 could be abolished by trichostatin A, indicating that deacetylase activity is required to allow REST repression. Taken together, these data establish a critical role for REST in the control of the tissue-specific expression of the human IB1 gene.
Resumo:
Spatial regulation of tyrosine phosphorylation is important for many aspects of cell biology. However, phosphotyrosine accounts for less than 1% of all phosphorylated substrates, and it is typically a very transient event in vivo. These factors complicate the identification of key tyrosine kinase substrates, especially in the context of their extraordinary spatial organization. Here, we describe an approach to identify tyrosine kinase substrates based on their subcellular distribution from within cells. This method uses an unnatural amino acid-modified Src homology 2 (SH2) domain that is expressed within cells and can covalently trap phosphotyrosine proteins on exposure to light. This SH2 domain-based photoprobe was targeted to cellular structures, such as the actin cytoskeleton, mitochondria, and cellular membranes, to capture tyrosine kinase substrates unique to each cellular region. We demonstrate that RhoA, one of the proteins associated with actin, can be phosphorylated on two tyrosine residues within the switch regions, suggesting that phosphorylation of these residues might modulate RhoA signaling to the actin cytoskeleton. We conclude that expression of SH2 domains within cellular compartments that are capable of covalent phototrapping can reveal the spatial organization of tyrosine kinase substrates that are likely to be important for the regulation of subcellular structures.
Resumo:
BACKGROUND: Establishing the genetic basis of phenotypes such as skeletal dysplasia in model organisms can provide insights into biologic processes and their role in human disease. METHODS: We screened mutagenized mice and observed a neonatal lethal skeletal dysplasia with an autosomal recessive pattern of inheritance. Through genetic mapping and positional cloning, we identified the causative mutation. RESULTS: Affected mice had a nonsense mutation in the thyroid hormone receptor interactor 11 gene (Trip11), which encodes the Golgi microtubule-associated protein 210 (GMAP-210); the affected mice lacked this protein. Golgi architecture was disturbed in multiple tissues, including cartilage. Skeletal development was severely impaired, with chondrocytes showing swelling and stress in the endoplasmic reticulum, abnormal cellular differentiation, and increased cell death. Golgi-mediated glycosylation events were altered in fibroblasts and chondrocytes lacking GMAP-210, and these chondrocytes had intracellular accumulation of perlecan, an extracellular matrix protein, but not of type II collagen or aggrecan, two other extracellular matrix proteins. The similarities between the skeletal and cellular phenotypes in these mice and those in patients with achondrogenesis type 1A, a neonatal lethal form of skeletal dysplasia in humans, suggested that achondrogenesis type 1A may be caused by GMAP-210 deficiency. Sequence analysis revealed loss-of-function mutations in the 10 unrelated patients with achondrogenesis type 1A whom we studied. CONCLUSIONS: GMAP-210 is required for the efficient glycosylation and cellular transport of multiple proteins. The identification of a mutation affecting GMAP-210 in mice, and then in humans, as the cause of a lethal skeletal dysplasia underscores the value of screening for abnormal phenotypes in model organisms and identifying the causative mutations.
Resumo:
Fanconi anemia (FA) is a genetically heterogeneous cancer-prone disorder associated with chromosomal instability and cellular hypersensitivity to DNA crosslinking agents. The FA pathway is suspected to play a crucial role in the cellular response to DNA replication stress. At a molecular level, however, the function of most of the FA proteins is unknown. FANCM displays DNA-dependent ATPase activity and promotes the dissociation of DNA triplexes, but the physiological significance of this activity remains elusive. Here we show that purified FANCM binds to Holliday junctions and replication forks with high specificity and promotes migration of their junction point in an ATPase-dependent manner. Furthermore, we provide evidence that FANCM can dissociate large recombination intermediates, via branch migration of Holliday junctions through 2.6 kb of DNA. Our data suggest a direct role for FANCM in DNA processing, consistent with the current view that FA proteins coordinate DNA repair at stalled replication forks.
Resumo:
PURPOSE: In the radiopharmaceutical therapy approach to the fight against cancer, in particular when it comes to translating laboratory results to the clinical setting, modeling has served as an invaluable tool for guidance and for understanding the processes operating at the cellular level and how these relate to macroscopic observables. Tumor control probability (TCP) is the dosimetric end point quantity of choice which relates to experimental and clinical data: it requires knowledge of individual cellular absorbed doses since it depends on the assessment of the treatment's ability to kill each and every cell. Macroscopic tumors, seen in both clinical and experimental studies, contain too many cells to be modeled individually in Monte Carlo simulation; yet, in particular for low ratios of decays to cells, a cell-based model that does not smooth away statistical considerations associated with low activity is a necessity. The authors present here an adaptation of the simple sphere-based model from which cellular level dosimetry for macroscopic tumors and their end point quantities, such as TCP, may be extrapolated more reliably. METHODS: Ten homogenous spheres representing tumors of different sizes were constructed in GEANT4. The radionuclide 131I was randomly allowed to decay for each model size and for seven different ratios of number of decays to number of cells, N(r): 1000, 500, 200, 100, 50, 20, and 10 decays per cell. The deposited energy was collected in radial bins and divided by the bin mass to obtain the average bin absorbed dose. To simulate a cellular model, the number of cells present in each bin was calculated and an absorbed dose attributed to each cell equal to the bin average absorbed dose with a randomly determined adjustment based on a Gaussian probability distribution with a width equal to the statistical uncertainty consistent with the ratio of decays to cells, i.e., equal to Nr-1/2. From dose volume histograms the surviving fraction of cells, equivalent uniform dose (EUD), and TCP for the different scenarios were calculated. Comparably sized spherical models containing individual spherical cells (15 microm diameter) in hexagonal lattices were constructed, and Monte Carlo simulations were executed for all the same previous scenarios. The dosimetric quantities were calculated and compared to the adjusted simple sphere model results. The model was then applied to the Bortezomib-induced enzyme-targeted radiotherapy (BETR) strategy of targeting Epstein-Barr virus (EBV)-expressing cancers. RESULTS: The TCP values were comparable to within 2% between the adjusted simple sphere and full cellular models. Additionally, models were generated for a nonuniform distribution of activity, and results were compared between the adjusted spherical and cellular models with similar comparability. The TCP values from the experimental macroscopic tumor results were consistent with the experimental observations for BETR-treated 1 g EBV-expressing lymphoma tumors in mice. CONCLUSIONS: The adjusted spherical model presented here provides more accurate TCP values than simple spheres, on par with full cellular Monte Carlo simulations while maintaining the simplicity of the simple sphere model. This model provides a basis for complementing and understanding laboratory and clinical results pertaining to radiopharmaceutical therapy.
Resumo:
Summary : Lipid metabolism disorders, leading to obesity and cardiovascular diseases, are a major public health issue worldwide. These diseases have been treated by drugs and surgery, leading to tremendous costs and secondary morbidity. The aim of this thesis work is to investigate the mechanisms of actions of a new, micronutrition-based, approach to prevent obesity and cardiovascular diseases. This specific combination of micronutrients, Lipistase, incorporated into any dietary ail can be used in the daily food. Micronutrients are substances used by the living organism in small quantities to maintain physiological homeostasis. However, the human body is not able to produce them and has to obtain them from dietary sources. The combination of micronutrients investigated here, is composed of 26 compounds including trace elements, vitamins, minerals, ails and plant extracts, known to have individually a beneficial effect on lipid metabolism regulation. These specific micronutrients are used for the first time in a combinatorial mode targeting several metabolic pathways for better homeostasis control as opposed to a single target treatment, either chemical or natural. Short and long term studies, in different mouse strains, showed a significant decrease in plasma triglycerides, body weight gain and body fat mass in animals that were fed with a standard diet containing Lipistase. Additionally, a greatly reduced fat accumulation was observed in adipose tissue and liver of Lipistase-treated animals, while lipid and glucose utilization by skeletal muscle was enhanced. Moreover, the size of atherosclerotic plaques was significantly reduced in mice whose masher was treated during pregnancy and suckling, without showing any adverse effect. Finally, Lipistase has been shown to increase longevity by 20%. The control mice that did not receive Lipistase in their diet did not show all these beneficial effects. These micronutrients are used at the lowest dosage ever reported for treating Lipid disorders, resulting in far much lower costs as well as probably a higher safety. This is the first approach being very suitable for an effective large scale prevention policy for obesity and cardiovascular diseases, like iodine in dietary salt has been for goiter. Résumé : Les dysrégulations du métabolisme des lipids, à l'origine d'obésité et de maladies cardiovasculaires, sont un problème de santé publique majeur et mondial. Ces maladies impliquent des traitements médicamenteux et chirurgicaux dont le coût la morbidité secondaire sont très important. Le but de ce travail de thèse est d'étudier les mécanismes d'action d'une nouvelle approche préventive, basée sur la micronutrition. Cette combinaison spécifique de micronutriments, Lipistase, peut être incorporée dans n'importe quelle huile alimentaire et utilisée dans l'alimentation quotidienne. Les micronutrirnents sont des substances essentielles, à très faibles doses, pour le maintien de l'homéostasie physiologique des organismes vivants. Cependant, étant incapable de les synthétiser, le corps humain est dépendant en cela de l'apport alimentaire. La combinaison de micronutriments que nous avons étudié contient 26 composants, incluant des extraits de plantes, des huiles, des vitamines, des métaux et des minéraux, tous connus pour avoir individuellement des effets bénéfiques sur la régulation du métabolisme des lipides. Ces micronutriments spécifiques sont utilisés pour la première fois en mode combinatoire, ciblant ainsi plusieurs voies métaboliques pour un meilleur control de l'homéostasie, par opposition monothérapies chimiques ou naturelles. Des expériences de court et long terme, avec divers modèles de souris, ont montré une diminution significative des taux de triglycérides plasmatiques, de la prise de poids et de la masse graisseuse corporelle chez les animaux qui ont reçu Lipistase dans la nourriture standard. Une accumulation significativement moins importante des graisses a été observée dans le tissu adipeux et hépatique des souris traitées, alors que l'utilisation des lipides et glucose a été favorisée dans le muscle. En outre, la taille des plaques d'athérosclérose aété significativement réduite chez les souris dont la mère a été traitée pendant la grossesse et l'allaitement, sans montrer aucun effet indésirable. Enfin, les souris traitées par Lipistase ont vécu 20% plus longtèmps. Les souris contrôles qui n'ont pas reçu Lipistase dans la nourriture n'ont montré aucun de ces effets bénéfiques. Ces micronutriments sont utilisés au dosage le plus faible jamais rapporté pour le traitement des maladies du métabolisme lipidique, permettant ainsi un coût plus faible et surtout une meilleure sécurité. C'est une approche adéquate pour une politique de prévention de santé publique à large échelle de l'obésité et des maladies cardiovasculaires. C'est en cela et sous bien d'autres aspects, une première dans la prise en charge des maladies du métabolisme lipidique et pourrait même être pour ces dernières ce que l'iode du sel de cuisine a été pour le goitre.
Resumo:
This study focused mainly on changes in the microtubule cytoskeleton in a transgenic mouse where beta-galactosidase fused to a truncated neurofilament subunit led to a decrease in neurofilament triplet protein expression and a loss in neurofilament assembly and abolished transport into neuronal processes in spinal cord and brain. Although all neurofilament subunits accumulated in neuronal cell bodies, our data suggest an increased solubility of all three subunits, rather than increased precipitation, and point to a perturbed filament assembly. In addition, reduced neurofilament phosphorylation may favor an increased filament degradation. The function of microtubules seemed largely unaffected, in that tubulin and microtubule-associated proteins (MAP) expression and their distribution were largely unchanged in transgenic animals. MAP1A was the only MAP with a reduced signal in spinal cord tissue, and differences in immunostaining in various brain regions corroborate a relationship between MAP1A and neurofilaments.