975 resultados para thromboxane A2
Resumo:
Atherosclerosis is a disease of the arteries; its characteristic features include chronic inflammation, extra- and intracellular lipid accumulation, extracellular matrix remodeling, and an increase in extracellular matrix volume. The underlying mechanisms in the pathogenesis of advanced atherosclerotic plaques, that involve local acidity of the extracellular fluid, are still incompletely understood. In this thesis project, my co-workers and I studied the different mechanisms by which local extracellular acidity could promote accumulation of the atherogenic apolipoprotein B-100 (apoB-100)-containing plasma lipoprotein particles in the inner layer of the arterial wall, the intima. We found that lipolysis of atherogenic apoB-100-containing plasma lipoprotein particles (LDL, IDL, and sVLDL) by the secretory phospholipase A2 group V (sPLA2-V) enzyme, was increased at acidic pH. Also, the binding of apoB-100-containing plasma lipoprotein particles to human aortic proteoglycans was dramatically enhanced at acidic pH. Additionally, lipolysis by sPLA2-V enzyme further increased this binding. Using proteoglycan-affinity chromatography, we found that sVLDL lipoprotein particles consist of populations, differing in their affinities toward proteoglycans. These populations also contained different amounts of apolipoprotein E (apoE) and apolipoprotein C-III (apoC-III); the amounts of apoC-III and apoE per particle were highest in the population with the lowest affinity toward proteoglycans. Since PLA2-modification of LDL particles has been shown to change their aggregation behavior, we also studied the effect of acidic pH on the monolayer structure covering lipoprotein particles after PLA2-induced hydrolysis. Using molecular dynamics simulations, we found that, in acidity, the monolayer is more tightly packed laterally; moreover, its spontaneous curvature is negative, suggesting that acidity may promote lipoprotein particles fusion. In addition to extracellular lipid accumulation, the apoB-100-containing plasma lipoprotein particles can be taken up by inflammatory cells, namely macrophages. Using radiolabeled lipoprotein particles and cell cultures, we showed that sPLA2-V-modification of LDL, IDL, and sVLDL lipoproteins particles, at neutral or acidic pH, increased their uptake by human monocyte-derived macrophages.
Resumo:
Background: Adenosine is a potent sleep-promoting substance, and one of its targets is the basal forebrain. Fairly little is known about its mechanism of action in the basal forebrain and about the receptor subtype mediating its regulating effects on sleep homeostasis. Homeostatic deficiency might be one of the causes of the profoundly disturbed sleep pattern in major depressive disorder, which could explain the reduced amounts of delta-activity-rich stages 3 and 4. Since major depression has a relatively high heritability, and on the other hand adenosine regulates sleep homeostasis and might also be involved in mood modulation, adenosine-related genes should be considered for their possible contribution to a predisposition for depression and disturbed sleep in humans. Depression is a complex disorder likely involving the abnormal functioning of several genes. Novel target genes which could serve as the possible common substrates for depression and comorbid disturbed sleep should be identified. In this way specific brain areas related to sleep regulation should be studied by using animal model of depression which represents more homogenous phenotype as compared to humans. It is also important to study these brain areas during the development of depressive-like features to understand how early changes could facilitate pathophysiological changes in depression. Aims and methods: We aimed to find out whether, in the basal forebrain, adenosine induces recovery non-rapid eye movement (NREM) sleep after prolonged waking through the A1 or/and A2A receptor subtype. A1 and A2A receptor antagonists were perfused into the rat basal forebrain during 3 h of sleep deprivation, and the amount of NREM sleep and delta power during recovery NREM sleep were analyzed. We then explored whether polymorphisms in genes related to the metabolism, transport and signaling of adenosine could predispose to depression accompanied by signs of disturbed sleep. DNA from 1423 individuals representative of the Finnish population and including controls and cases with depression, depression accompanied by early morning awakenings and depression accompanied by fatigue, was used in the study to investigate the possible association between polymorphisms from adenosine-related genes and cases. Finally to find common molecular substrates of depression and disturbed sleep, gene expression changes were investigated in specific brain areas in the rat clomipramine model of depression. We focused on the basal forebrain of 3-week old clomipramine-treated rats which develop depressive-like symptoms later in adulthood and on the hypothalamus of adult female clomipramine-treated rats. Results: Blocking of the A1 receptor during sleep deprivation resulted in a reduction of the recovery NREM sleep amount and delta power, whereas A2A receptor antagonism had no effect. Polymorphisms in adenosine-related genes SLC29A3 (equilibrative nucleoside transporter type 3) in women and SLC28A1 (concentrative nucleoside transporter type 1) in men associated with depression alone as well as when accompanied by early morning awakenings and fatigue. In Study III the basal forebrain of postnatal rats treated with clomipramine displayed disturbances in gamma-aminobutyric acid (GABA) receptor type A signaling, in synaptic transmission and possible epigenetic changes. CREB1 was identified as a common transcription denominator which also mediates epigenetic regulation. In the hypothalamus the major changes included the expression of genes in GABA-A receptor pathway, K+ channel-related, glutamatergic and mitochondrial genes, as well as an overexpression of genes related to RNA and mRNA processing. Conclusions: Adenosine plays an important role in sleep homeostasis by promoting recovery NREM sleep via the A1 receptor subtype in the basal forebrain. Also adenosine levels might contribute to the risk of depression with disturbed sleep, since the genes encoding nucleoside transporters showed the strongest associations with depression alone and when accompanied by signs of disturbed sleep in both women and men. Sleep and mood abnormalities in major depressive disorder could be a consequence of multiple changes at the transcriptional level, GABA-A receptor signaling and synaptic transmission in sleep-related basal forebrain and the hypothalamus.
Resumo:
The discovery of genetic factors that contribute to schizophrenia susceptibility is a key challenge in understanding the etiology of this disease. Here, we report the identification of a novel schizophrenia candidate gene on chromosome 1q32, plexin A2 (PLXNA2), in a genome-wide association study using 320 patients with schizophrenia of European descent and 325 matched controls. Over 25,000 single-nucleotide polymorphisms (SNPs) located within approximately 14,000 genes were tested. Out of 62 markers found to be associated with disease status, the most consistent finding was observed for a candidate locus on chromosome 1q32. The marker SNP rs752016 showed suggestive association with schizophrenia (odds ratio (OR) = 1.49, P = 0.006). This result was confirmed in an independent case-control sample of European Americans (combined OR = 1.38, P = 0.035) and similar genetic effects were observed in smaller subsets of Latin Americans (OR = 1.26) and Asian Americans (OR = 1.37). Supporting evidence was also obtained from two family-based collections, one of which reached statistical significance (OR = 2.2, P = 0.02). High-density SNP mapping showed that the region of association spans approximately 60 kb of the PLXNA2 gene. Eight out of 14 SNPs genotyped showed statistically significant differences between cases and controls. These results are in accordance with previous genetic findings that identified chromosome 1q32 as a candidate region for schizophrenia. PLXNA2 is a member of the transmembrane semaphorin receptor family that is involved in axonal guidance during development and may modulate neuronal plasticity and regeneration. The PLXNA2 ligand semaphorin 3A has been shown to be upregulated in the cerebellum of individuals with schizophrenia. These observations, together with the genetic results, make PLXNA2 a likely candidate for the 1q32 schizophrenia susceptibility locus.
Resumo:
The Alfven surface waves can arise due to the discontinuity in the Alfven speed across the interface along which these waves propagate. This note studies the relationship between v A1 and v A2 which is required for the existence of Alfven surface waves in low-beta plasma.
Resumo:
1-Methoxycyclohexa-1,4-dienes are readily available from the metal-ammonia-alcohol reduction of aromatic ethers. The use of these dihydrocompounds in the synthesis of a variety of natural products is reviewed.
Resumo:
Tämä työ käsittelee Suomen ilmastoa puutarhakasvien näkökulmasta painopisteen ollessa lämpöilmastollisissa piirteissä ja kasvien talvehtimiseen liittyvissä tekijöissä. Työssä esitellään puutarhakasvien, erityisesti monivuotisten puuvartisten kasvien selviytymiseen vaikuttavia tekijöitä, ja näiden pohjalta kartoitetaan ilmastollisia olosuhteita eri puolilla Suomea viimeisen noin viiden vuosikymmenen ajalta. Lisäksi pyritään arvioimaan tuleville vuosikymmenille ennustetun lämpenemisen aiheuttamia muutoksia Suomen puutarhatuotannon menestymismahdollisuuksissa. Nykyilmaston osalta tarkastelu perustuu vuosien 1960-2006 päivittäisiin lumi- ja lämpötilahavaintoihin kymmenellä havaintopaikalla lounaisrannikolta Koillismaalle. Puutarhakasvien kannalta hyödyllisiä ja haitallisia ilmaston piirteitä pyrittiin kuvaamaan erilaisilla indekseillä, ns. kynnystapahtumien ajankohdilla ja erinäisten raja-arvojen ylittymisillä. Tulevaisuuden jaksojen 2010-39 ja 2040-69 osalta tilannetta tarkasteltiin A2- ja B1-skenaariossa. Työssä käytettiin ns. delta-menetelmää, missä 19 ilmastomallin keskiarvona saadut arviot kuukausikeskilämpötilojen noususta lisättiin havaintopaikkojen päivittäisiin vuosien 1971-2000 lämpötilahavaintoihin. Olosuhteet puutarhakasvien menestymiselle vaihtelevat paljon tarkastelussa olleella kolmelle kasvimaantieteelliselle vyöhykkeelle sijoittuvalla alueella. 1990-luvun alusta lisääntyneet leudot talvet näkyvät hyvin talvehtimisoloja kuvaavissa muuttujissa. Toisaalta havaintopaikkojen pienilmastolliset tekijät korostuvat erityisesti alueiden hallatilanteita tarkasteltaessa. Tulevaisuuden osalta monien puutarhakasvien talven selviytymisedellytyksiin vaikuttavien tekijöiden voidaan odottaa yleisesti parantuvan ilmaston lämmetessä, tosin Suomen ilmastossa pakkasvahinkojen riski on silti olemassa. Toisaalta entisestään leudontuvat talvet lämpöjaksoineen tulevat lisäämään mahdollisuutta kasvien kylmänkestävyyden heikkenemisestä aiheutuville ongelmille. Myöhäisten hallojen esiintymisen aiheuttamat vahingot riippuvat niitä edeltäneen ajan kasvuolosuhteista. Tällöin kasvukauden alun ajankohdassa, sen alkupuolen lämpimyydessä ja hallojen esiintymisen ajankohdassa tapahtuvien muutosten nettovaikutus ratkaisee myöhäisten hallatilanteiden kukinnalle muodostavan riskin tulevaisuudessa. Tästä ei saatu yksiselitteisiä tuloksia tämän tutkimuksen puitteissa, sillä hallariskiä kuvaavan indeksin käyttäytyminen oli varsin epämääräistä.
Resumo:
The antisemitic literature collection contains publications and illustrations related primarily to the subject of antisemitism in the United States in the twentieth century. The bulk of the materials are in English and in good condition. The materials were collected over several decades primarily by Nathan Kaganoff, librarian of the American Jewish Historical Society.
Resumo:
Hydrologic impacts of climate change are usually assessed by downscaling the General Circulation Model (GCM) output of large-scale climate variables to local-scale hydrologic variables. Such an assessment is characterized by uncertainty resulting from the ensembles of projections generated with multiple GCMs, which is known as intermodel or GCM uncertainty. Ensemble averaging with the assignment of weights to GCMs based on model evaluation is one of the methods to address such uncertainty and is used in the present study for regional-scale impact assessment. GCM outputs of large-scale climate variables are downscaled to subdivisional-scale monsoon rainfall. Weights are assigned to the GCMs on the basis of model performance and model convergence, which are evaluated with the Cumulative Distribution Functions (CDFs) generated from the downscaled GCM output (for both 20th Century [20C3M] and future scenarios) and observed data. Ensemble averaging approach, with the assignment of weights to GCMs, is characterized by the uncertainty caused by partial ignorance, which stems from nonavailability of the outputs of some of the GCMs for a few scenarios (in Intergovernmental Panel on Climate Change [IPCC] data distribution center for Assessment Report 4 [AR4]). This uncertainty is modeled with imprecise probability, i.e., the probability being represented as an interval gray number. Furthermore, the CDF generated with one GCM is entirely different from that with another and therefore the use of multiple GCMs results in a band of CDFs. Representing this band of CDFs with a single valued weighted mean CDF may be misleading. Such a band of CDFs can only be represented with an envelope that contains all the CDFs generated with a number of GCMs. Imprecise CDF represents such an envelope, which not only contains the CDFs generated with all the available GCMs but also to an extent accounts for the uncertainty resulting from the missing GCM output. This concept of imprecise probability is also validated in the present study. The imprecise CDFs of monsoon rainfall are derived for three 30-year time slices, 2020s, 2050s and 2080s, with A1B, A2 and B1 scenarios. The model is demonstrated with the prediction of monsoon rainfall in Orissa meteorological subdivision, which shows a possible decreasing trend in the future.
Resumo:
Glycosaminoglycans (GAGs) are complex highly charged linear polysaccharides that have a variety of roles in biological processes. We report the first use of molecular dynamics (MD) free energy calculations using the MM/PBSA method to investigate the binding of GAGs to protein molecules, namely the platelet endothelial cell adhesion molecule 1 (PECAM-1) and annexin A2. Calculations of the free energy of the binding of heparin fragments of different sizes reveal the existence of a region of low GAG-binding affinity in domains 5-6 of PECAM-1 and a region of high affinity in domains 2-3, consistent with experimental data and ligand-protein docking studies. A conformational hinge movement between domains 2 and 3 was observed, which allows the binding of heparin fragments of increasing size (pentasaccharides to octasaccharides) with an increasingly higher binding affinity. Similar simulations of the binding of a heparin fragment to annexin A2 reveal the optimization of electrostatic and hydrogen bonding interactions with the protein and protein-bound calcium ions. In general, these free energy calculations reveal that the binding of heparin to protein surfaces is dominated by strong electrostatic interactions for longer fragments, with equally important contributions from van der Waals interactions and vibrational entropy changes, against a large unfavorable desolvation penalty due to the high charge density of these molecules.
Resumo:
In the present thesis, questions of spectral tuning, the relation of spectral and thermal properties of visual pigments, and evolutionary adaptation to different light environments were addressed using a group of small crustaceans of the genus Mysis as a model. The study was based on microspectrophotometric measurements of visual pigment absorbance spectra, electrophysiological measurements of spectral sensitivities of dark-adapted eyes, and sequencing of the opsin gene retrieved through PCR. The spectral properties were related to the spectral transmission of the respective light environments, as well as to the phylogentic histories of the species. The photoactivation energy (Ea) was estimated from temperature effects on spectral sensitivity in the long-wavelength range, and calculations were made for optimal quantum catch and optimal signal-to-noise ratio in the different light environments. The opsin amino acid sequences of spectrally characterized individuals were compared to find candidate residues for spectral tuning. The general purpose was to clarify to what extent and on what time scale adaptive evolution has driven the functional properties of (mysid) visual pigments towards optimal performance in different light environments. An ultimate goal was to find the molecular mechanisms underlying the spectral tuning and to understand the balance between evolutionary adaptation and molecular constraints. The totally consistent segregation of absorption maxima (λmax) into (shorter-wavelength) marine and (longer-wavelength) freshwater populations suggests that truly adaptive evolution is involved in tuning the visual pigment for optimal performance, driven by selection for high absolute visual sensitivity. On the other hand, the similarity in λmax and opsin sequence between several populations of freshwater M. relicta in spectrally different lakes highlights the limits to adaptation set by evolutionary history and time. A strong inverse correlation between Ea and λmax was found among all visual pigments studied in these respects, including those of M. relicta and 10 species of vertebrate pigments, and this was used to infer thermal noise. The conceptual signal-to-noise ratios thus calculated for pigments with different λmax in the Baltic Sea and Lake Pääjärvi light environments supported the notion that spectral adaptation works towards maximizing the signal-to-noise ratio rather than quantum catch as such. Judged by the shape of absorbance spectra, the visual pigments of all populations of M. relicta and M. salemaai used exclusively the A2 chromophore (3, 4-dehydroretinal). A comparison of amino acid substitutions between M. relicta and M. salemaai indicated that mysid shrimps have a small number of readily available tuning sites to shift between a shorter - and a longer -wavelength opsin. However, phylogenetic history seems to have prevented marine M. relicta from converting back to the (presumably) ancestral opsin form, and thus the more recent reinvention of marine spectral sensitivity has been accomplished by some other novel mechanism, yet to be found
Resumo:
Visual pigments of different animal species must have evolved at some stage to match the prevailing light environments, since all visual functions depend on their ability to absorb available photons and transduce the event into a reliable neural signal. There is a large literature on correlation between the light environment and spectral sensitivity between different fish species. However, little work has been done on evolutionary adaptation between separated populations within species. More generally, little is known about the rate of evolutionary adaptation to changing spectral environments. The objective of this thesis is to illuminate the constraints under which the evolutionary tuning of visual pigments works as evident in: scope, tempo, available molecular routes, and signal/noise trade-offs. Aquatic environments offer Nature s own laboratories for research on visual pigment properties, as naturally occurring light environments offer an enormous range of variation in both spectral composition and intensity. The present thesis focuses on the visual pigments that serve dim-light vision in two groups of model species, teleost fishes and mysid crustaceans. The geographical emphasis is in the brackish Baltic Sea area with its well-known postglacial isolation history and its aquatic fauna of both marine and fresh-water origin. The absorbance spectrum of the (single) dim-light visual pigment were recorded by microspectrophotometry (MSP) in single rods of 26 fish species and single rhabdoms of 8 opossum shrimp populations of the genus Mysis inhabiting marine, brackish or freshwater environments. Additionally, spectral sensitivity was determined from six Mysis populations by electroretinogram (ERG) recording. The rod opsin gene was sequenced in individuals of four allopatric populations of the sand goby (Pomatoschistus minutus). Rod opsins of two other goby species were investigated as outgroups for comparison. Rod absorbance spectra of the Baltic subspecies or populations of the primarily marine species herring (Clupea harengus membras), sand goby (P. minutus), and flounder (Platichthys flesus) were long-wavelength-shifted compared to their marine populations. The spectral shifts are consistent with adaptation for improved quantum catch (QC) as well as improved signal-to-noise ratio (SNR) of vision in the Baltic light environment. Since the chromophore of the pigment was pure A1 in all cases, this has apparently been achieved by evolutionary tuning of the opsin visual pigment. By contrast, no opsin-based differences were evident between lake and sea populations of species of fresh-water origin, which can tune their pigment by varying chromophore ratios. A more detailed analysis of differences in absorbance spectra and opsin sequence between and within populations was conducted using the sand goby as model species. Four allopatric populations from the Baltic Sea (B), Swedish west coast (S), English Channel (E), and Adriatic Sea (A) were examined. Rod absorbance spectra, characterized by the wavelength of maximum absorbance (λmax), differed between populations and correlated with differences in the spectral light transmission of the respective water bodies. The greatest λmax shift as well as the greatest opsin sequence difference was between the Baltic and the Adriatic populations. The significant within-population variation of the Baltic λmax values (506-511 nm) was analyzed on the level of individuals and was shown to correlate well with opsin sequence substitutions. The sequences of individuals with λmax at shorter wavelengths were identical to that of the Swedish population, whereas those with λmax at longer wavelengths additionally had substitution F261F/Y in the sixth transmembrane helix of the protein. This substitution (Y261) was also present in the Baltic common gobies and is known to redshift spectra. The tuning mechanism of the long-wavelength type Baltic sand gobies is assumed to be the co-expression of F261 and Y261 in all rods to produce ≈ 5 nm redshift. The polymorphism of the Baltic sand goby population possibly indicates ambiguous selection pressures in the Baltic Sea. The visual pigments of all lake populations of the opossum shrimp (Mysis relicta) were red-shifted by 25 nm compared with all Baltic Sea populations. This is calculated to confer a significant advantage in both QC and SNR in many humus-rich lakes with reddish water. Since only A2 chromophore was present, the differences obviously reflect evolutionary tuning of the visual protein, the opsin. The changes have occurred within the ca. 9000 years that the lakes have been isolated from the Sea after the most recent glaciation. At present, it seems that the mechanism explaining the spectral differences between lake and sea populations is not an amino acid substitution at any other conventional tuning site, but the mechanism is yet to be found.
Resumo:
In the present study, we identified a novel asthma susceptibility gene, NPSR1 (neuropeptide S receptor 1) on chromosome 7p14.3 by the positional cloning strategy. An earlier significant linkage mapping result among Finnish Kainuu asthma families was confirmed in two independent cohorts: in asthma families from Quebec, Canada and in allergy families from North Karelia, Finland. The linkage region was narrowed down to a 133-kb segment by a hierarchial genotyping method. The observed 77-kb haplotype block showed 7 haplotypes and a similar risk and nonrisk pattern in all three populations studied. All seven haplotypes occur in all three populations at frequences > 2%. Significant elevated relative risks were detected for elevated total IgE (immunoglobulin E) or asthma. Risk effects of the gene variants varied from 1.4 to 2.5. NPSR1 belongs to the G protein-coupled receptor (GPCR) family with a topology of seven transmembrane domains. NPSR1 has 9 exons, with the two main transcripts, A and B, encoding proteins of 371 and 377 amino acids, respectively. We detected a low but ubiquitous expression level of NPSR1-B in various tissues and endogenous cell lines while NPSR1-A has a more restricted expression pattern. Both isoforms were expressed in the lung epithelium. We observed aberrant expression levels of NPSR1-B in smooth muscle in asthmatic bronchi as compared to healthy. In an experimental mouse model, the induced lung inflammation resulted in elevated Npsr1 levels. Furthermore, we demonstrated that the activation of NPSR1 with its endogenous agonist, neuropeptide S (NPS), resulted in a significant inhibition of the growth of NPSR1-A overexpressing stable cell lines (NPSR1-A cells). To determine which target genes were regulated by the NPS-NPSR1 pathway, NPSR1-A cells were stimulated with NPS, and differentially expressed genes were identified using the Affymetrix HGU133Plus2 GeneChip. A total of 104 genes were found significantly up-regulated and 42 down-regulated 6 h after NPS administration. The up-regulated genes included many neuronal genes and some putative susceptibility genes for respiratory disorders. By Gene Ontology enrichment analysis, the biological process terms, cell proliferation, morphogenesis and immune response were among the most altered. The expression of four up-regulated genes, matrix metallopeptidase 10 (MMP10), INHBA (activin A), interleukin 8 (IL8) and EPH receptor A2 (EPHA2), were verified and confirmed by quantitative reverse-transcriptase-PCR. In conclusion, we identified a novel asthma susceptibility gene, NPSR1, on chromosome 7p14.3. NPS-NPSR1 represents a novel pathway that regulates cell proliferation and immune responses, and thus may have functional relevance in the pathogenesis of asthma.
Resumo:
Aim: To characterize the inhibition of platelet function by paracetamol in vivo and in vitro, and to evaluate the possible interaction of paracetamol and diclofenac or valdecoxib in vivo. To assess the analgesic effect of the drugs in an experimental pain model. Methods: Healthy volunteers received increasing doses of intravenous paracetamol (15, 22.5 and 30 mg/kg), or the combination of paracetamol 1 g and diclofenac 1.1 mg/kg or valdecoxib 40 mg (as the pro-drug parecoxib). Inhibition of platelet function was assessed with photometric aggregometry, the platelet function analyzer (PFA-100), and release of thromboxane B2. Analgesia was assessed with the cold pressor test. The inhibition coefficient of platelet aggregation by paracetamol was determined as well as the nature of interaction between paracetamol and diclofenac by an isobolographic analysis in vitro. Results: Paracetamol inhibited platelet aggregation and TxB2-release dose-dependently in volunteers and concentration-dependently in vitro. The inhibition coefficient was 15.2 mg/L (95% CI 11.8 - 18.6). Paracetamol augmented the platelet inhibition by diclofenac in vivo, and the isobole showed that this interaction is synergistic. Paracetamol showed no interaction with valdecoxib. PFA-100 appeared insensitive in detecting platelet dysfunction by paracetamol, and the cold-pressor test showed no analgesia. Conclusions: Paracetamol inhibits platelet function in vivo and shows synergism when combined with diclofenac. This effect may increase the risk of bleeding in surgical patients with an impaired haemostatic system. The combination of paracetamol and valdecoxib may be useful in patients with low risk for thromboembolism. The PFA-100 seems unsuitable for detection of platelet dysfunction and the cold-pressor test seems unsuitable for detection of analgesia by paracetamol.
Resumo:
Phospholipase A(2) hydrolyzes phospholipids at the sn-2 position to cleave the fatty-acid ester bond of L-glycerophospholipids. The catalytic dyad (Asp99 and His48) along with a nucleophilic water molecule is responsible for enzyme hydrolysis. Furthermore, the residue Asp49 in the calcium-binding loop is essential for controlling the binding of the calcium ion and the catalytic action of phospholipase A2. To elucidate the structural role of His48 and Asp49, the crystal structures of three active-site single mutants H48N, D49N and D49K have been determined at 1.9 angstrom resolution. Although the catalytically important calcium ion is present in the H48N mutant, the crystal structure shows that proton transfer is not possible from the catalytic water to the mutated residue. In the case of the Asp49 mutants, no calcium ion was found in the active site. However, the tertiary structures of the three active-site mutants are similar to that of the trigonal recombinant enzyme. Molecular-dynamics simulation studies provide a good explanation for the crystallographic results.
Resumo:
The carbohydrate binding specificity of the basic lectin from winged bean (Psophocarpus tetragonolobus) was investigated by quantitative precipitin analysis using blood group A, B, H, Le and I substances and by precipitation inhibition with various mono- and oligosaccharides. The lectin precipitated best with A1 substances and moderately with B and A2 substances, but not with H or Le substances. Inhibition assays of lectin-blood group A1 precipitation demonstration that A substance-derived oligosaccharides having the common structure: d-Ga1NAcα(1 → 3)d-Gal-(β1 → Image ) to a d-Glc, were the best inhibitors and about 8 and 4 times more active than d-Ga1NAc and d-Ga1NAcα(1 → 3)d-Ga1, respectively. A difucosyl A-specific oligosaccharide (A-penta), a monofucosyl (A-tetra) and a non-fucosyl containing (A5 II) oligosaccharide, d-Ga1NAcα(1 → 3)d-Ga1β(1 → 3)d-G1cNAc, had almost the same reactivity, suggesting that the fucose linked to the sub-terminal d-Ga1 or to the third sugar, d-GlcNAc, from the non-reducing end made no contribution to the carbohydrate binding. Although a terminal non-reducing d-Ga1NAc or d-Ga1 residue was indispensible for binding, the lectin bound not only to these terminal non-reducing galactopyranosyl residues, but also showed increased binding to oligosaccharides in which it was bonded to a sub-terminal d-Ga1 joined to a d-GlcNAc residue, as in blood group A or B substances. This defines the site, thus far, as complementary to a disaccharide plus the β linkage to the third sugar (d-Glc or d-GlcNAc) from the non-reducing end. The role of the β(1 → 3) or β(1 → 4) linkage of the sub-terminal non-reducing d-Gal to the d-GlcNAc requires further study.