994 resultados para threonine transfer RNA ligase
Resumo:
The Institute for Transportation (InTrans) at Iowa State University completed work on an in-depth study of crash history on lowvolume, rural roads in Iowa in December 2010. Results indicated that unpaved roads with traffic volumes greater than 100 vehicles per day (vpd) exhibit significantly higher crash frequencies, rates, and densities than any other class of low-volume road examined, paved or unpaved. The total mileage for this class of roadway in Iowa is only about 4,400 miles, spread over 99 counties in the state, which is certainly a manageable number of miles for individual rural agencies. The purpose of this study was to identify and examine several unpaved, local road segments with higher than average crash frequencies, select and undertake potentially-beneficial mitigation, and evaluate the results as time allowed. A variety of low-cost options were considered, including engineering improvements, enhanced efforts by law enforcement, and educational initiatives. Using input, active support, and participation from local agencies and state and Federal safety advocates, the study afforded a unique opportunity to examine useful tools for local rural agencies to utilize in addressing safety on this particular type of roadway.
Resumo:
BACKGROUND: The in vivo transfer of naked plasmid DNA into organs such as muscles is commonly used to assess the expression of prophylactic or therapeutic genes in animal disease models. RESULTS: In this study, we devised vectors allowing a tight regulation of transgene expression in mice from such non-viral vectors using a doxycycline-controlled network of activator and repressor proteins. Using these vectors, we demonstrate proper physiological response as consequence of the induced expression of two therapeutically relevant proteins, namely erythropoietin and utrophin. Kinetic studies showed that the induction of transgene expression was only transient, unless epigenetic regulatory elements termed Matrix Attachment Regions, or MAR, were inserted upstream of the regulated promoters. Using episomal plasmid rescue and quantitative PCR assays, we observed that similar amounts of plasmids remained in muscles after electrotransfer with or without MAR elements, but that a significant portion had integrated into the muscle fiber chromosomes. Interestingly, the MAR elements were found to promote plasmid genomic integration but to oppose silencing effects in vivo, thereby mediating long-term expression. CONCLUSIONS: This study thus elucidates some of the determinants of transient or sustained expression from the use of non-viral regulated vectors in vivo.
Resumo:
Genomic islands (GEIs) are large DNA segments, present in most bacterial genomes, that are most likely acquired via horizontal gene transfer. Here, we study the self-transfer system of the integrative and conjugative element ICEclc of Pseudomonas knackmussii B13, which stands model for a larger group of ICE/GEI with syntenic core gene organization. Functional screening revealed that unlike conjugative plasmids and other ICEs ICEclc carries two separate origins of transfer, with different sequence context but containing a similar repeat motif. Conjugation experiments with GFP-labelled ICEclc variants showed that both oriTs are used for transfer and with indistinguishable efficiencies, but that having two oriTs results in an estimated fourfold increase of ICEclc transfer rates in a population compared with having a single oriT. A gene for a relaxase essential for ICEclc transfer was also identified, but in vivo strand exchange assays suggested that the relaxase processes both oriTs in a different manner. This unique dual origin of transfer system might have provided an evolutionary advantage for distribution of ICE, a hypothesis that is supported by the fact that both oriT regions are conserved in several GEIs related to ICEclc.
Resumo:
Proteins of the RsmA/CsrA family are global translational regulators in many bacterial species. We have determined the solution structure of a complex formed between the RsmE protein, a member of this family from Pseudomonas fluorescens, and a target RNA encompassing the ribosome-binding site of the hcnA gene. The RsmE homodimer with its two RNA-binding sites makes optimal contact with an 5'-A/UCANGGANGU/A-3' sequence in the mRNA. When tightly gripped by RsmE, the ANGGAN core folds into a loop, favoring the formation of a 3-base-pair stem by flanking nucleotides. We validated these findings by in vivo and in vitro mutational analyses. The structure of the complex explains well how, by sequestering the Shine-Dalgarno sequence, the RsmA/CsrA proteins repress translation.
Resumo:
Selostus: [sup 134]Cs-aktiivisuuspitoisuuden vähentäminen ferriheksasyanoferraatin avulla
Resumo:
Transportation research makes a difference for Iowans and the nation. Implementation of cost-effective research projects contributes to a transportation network that is safer, more efficient, and longer lasting. Working in cooperation with our partners from universities, industry, other states, and FHWA, as well as participation in the Transportation Research Board (TRB), provides benefits for every facet of the DOT. This allows us to serve our communities and the traveling public more effectively. Pooled fund projects allow leveraging of funds for higher returns on investments. In 2011, Iowa led thirteen active pooled fund studies, participated in twenty-one others, and was wrapping-up, reconciling, and closing out an additional 6 Iowa Led pooled fund studies. In addition, non-pooled fund SPR projects included approximately 8 continued, 9 new, and over a dozen reoccurring initiatives such as the technical transfer/training program. Additional research is managed and conducted by the Office of Traffic and Safety and other departments in the Iowa DOT.
Resumo:
Transportation research makes a difference for Iowans and the nation. Implementation of cost-effective research projects contributes to a transportation network that is safer, more efficient, and longer lasting. Working in cooperation with our partners from universities, industry, other states, and FHWA, as well as participation in the Transportation Research Board (TRB), provides benefits for every facet of the DOT. This allows us to serve our communities and the traveling public more effectively. Pooled fund projects allow leveraging of funds for higher returns on investments. In 2011, Iowa led thirteen active pooled fund studies, participated in twenty-one others, and was wrapping-up, reconciling, and closing out an additional 6 Iowa Led pooled fund studies. In addition, non-pooled fund SPR projects included approximately 8 continued, 9 new, and over a dozen reoccurring initiatives such as the technical transfer/training program. Additional research is managed and conducted by the Office of Traffic and Safety and other departments in the Iowa DOT.
Resumo:
Integrative and conjugative elements (ICEs) are particularly interesting model systems for horizontal gene transfer, because they normally reside in an integrated state in the host chromosome but can excise and self-transfer under particular conditions, typically requiring exquisite regulatory cascades. Despite important advances in our understanding of the transfer mechanisms of a number of ICE, many essential details are lacking. Recently we reported that ICEclc, a 103 kb ICE of Pseudomonas knackmussii B13, has two active origins of transfer (oriTs), which is very much unlike conjugative plasmids that usually employ a single oriT. We discuss here how this dual oriT system could function and how it actually could have presented an evolutionary advantage for ICEclc distribution.
Resumo:
RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III-related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development.
Resumo:
The objective of this work was to develop a low-cost portable damage detection tool to assess and predict damage areas in highway bridges. The proposed tool was based on standard vibration-based damage identification (VBDI) techniques but was extended to a new approach based on operational traffic load. The methodology was tested using numerical simulations, laboratory experiments, and field testing.
Resumo:
This research investigated the impact of motorcycle headlight configurations, rider colors, and age of the drivers (participants) on motorcycle conspicuity in simulated urban and rural environments.
Resumo:
Pseudomonas fluorescens CHA0, an antagonist of phytopathogenic fungi in the rhizosphere of crop plants, elaborates and excretes several secondary metabolites with antibiotic properties. Their synthesis depends on three small RNAs (RsmX, RsmY, and RsmZ), whose expression is positively controlled by the GacS-GacA two-component system at high cell population densities. To find regulatory links between primary and secondary metabolism in P. fluorescens and in the related species Pseudomonas aeruginosa, we searched for null mutations that affected central carbon metabolism as well as the expression of rsmY-gfp and rsmZ-gfp reporter constructs but without slowing down the growth rate in rich media. Mutation in the pycAB genes (for pyruvate carboxylase) led to down-regulation of rsmXYZ and secondary metabolism, whereas mutation in fumA (for a fumarase isoenzyme) resulted in up-regulation of the three small RNAs and secondary metabolism in the absence of detectable nutrient limitation. These effects required the GacS sensor kinase but not the accessory sensors RetS and LadS. An analysis of intracellular metabolites in P. fluorescens revealed a strong positive correlation between small RNA expression and the pools of 2-oxoglutarate, succinate, and fumarate. We conclude that Krebs cycle intermediates (already known to control GacA-dependent virulence factors in P. aeruginosa) exert a critical trigger function in secondary metabolism via the expression of GacA-dependent small RNAs.
Resumo:
Williams-Beuren syndrome (WBS) is a neurodevelopmental and multisystemic disease that results from hemizygosity of approximately 25 genes mapping to chromosomal region 7q11.23. We report here the preliminary description of eight novel genes mapping within the WBS critical region and/or its syntenic mouse region. Three of these genes, TRIM50, TRIM73 and TRIM74, belong to the TRIpartite motif gene family, members of which were shown to be associated to several human genetic diseases. We describe the preliminary functional characterization of these genes and show that Trim50 encodes an E3 ubiquitin ligase, opening the interesting hypothesis that the ubiquitin-mediated proteasome pathway might be involved in the WBS phenotype.