1000 resultados para temps de travail
Resumo:
Les instabilités engendrées par des gradients de densité interviennent dans une variété d'écoulements. Un exemple est celui de la séquestration géologique du dioxyde de carbone en milieux poreux. Ce gaz est injecté à haute pression dans des aquifères salines et profondes. La différence de densité entre la saumure saturée en CO2 dissous et la saumure environnante induit des courants favorables qui le transportent vers les couches géologiques profondes. Les gradients de densité peuvent aussi être la cause du transport indésirable de matières toxiques, ce qui peut éventuellement conduire à la pollution des sols et des eaux. La gamme d'échelles intervenant dans ce type de phénomènes est très large. Elle s'étend de l'échelle poreuse où les phénomènes de croissance des instabilités s'opèrent, jusqu'à l'échelle des aquifères à laquelle interviennent les phénomènes à temps long. Une reproduction fiable de la physique par la simulation numérique demeure donc un défi en raison du caractère multi-échelles aussi bien au niveau spatial et temporel de ces phénomènes. Il requiert donc le développement d'algorithmes performants et l'utilisation d'outils de calculs modernes. En conjugaison avec les méthodes de résolution itératives, les méthodes multi-échelles permettent de résoudre les grands systèmes d'équations algébriques de manière efficace. Ces méthodes ont été introduites comme méthodes d'upscaling et de downscaling pour la simulation d'écoulements en milieux poreux afin de traiter de fortes hétérogénéités du champ de perméabilité. Le principe repose sur l'utilisation parallèle de deux maillages, le premier est choisi en fonction de la résolution du champ de perméabilité (grille fine), alors que le second (grille grossière) est utilisé pour approximer le problème fin à moindre coût. La qualité de la solution multi-échelles peut être améliorée de manière itérative pour empêcher des erreurs trop importantes si le champ de perméabilité est complexe. Les méthodes adaptatives qui restreignent les procédures de mise à jour aux régions à forts gradients permettent de limiter les coûts de calculs additionnels. Dans le cas d'instabilités induites par des gradients de densité, l'échelle des phénomènes varie au cours du temps. En conséquence, des méthodes multi-échelles adaptatives sont requises pour tenir compte de cette dynamique. L'objectif de cette thèse est de développer des algorithmes multi-échelles adaptatifs et efficaces pour la simulation des instabilités induites par des gradients de densité. Pour cela, nous nous basons sur la méthode des volumes finis multi-échelles (MsFV) qui offre l'avantage de résoudre les phénomènes de transport tout en conservant la masse de manière exacte. Dans la première partie, nous pouvons démontrer que les approximations de la méthode MsFV engendrent des phénomènes de digitation non-physiques dont la suppression requiert des opérations de correction itératives. Les coûts de calculs additionnels de ces opérations peuvent toutefois être compensés par des méthodes adaptatives. Nous proposons aussi l'utilisation de la méthode MsFV comme méthode de downscaling: la grille grossière étant utilisée dans les zones où l'écoulement est relativement homogène alors que la grille plus fine est utilisée pour résoudre les forts gradients. Dans la seconde partie, la méthode multi-échelle est étendue à un nombre arbitraire de niveaux. Nous prouvons que la méthode généralisée est performante pour la résolution de grands systèmes d'équations algébriques. Dans la dernière partie, nous focalisons notre étude sur les échelles qui déterminent l'évolution des instabilités engendrées par des gradients de densité. L'identification de la structure locale ainsi que globale de l'écoulement permet de procéder à un upscaling des instabilités à temps long alors que les structures à petite échelle sont conservées lors du déclenchement de l'instabilité. Les résultats présentés dans ce travail permettent d'étendre les connaissances des méthodes MsFV et offrent des formulations multi-échelles efficaces pour la simulation des instabilités engendrées par des gradients de densité. - Density-driven instabilities in porous media are of interest for a wide range of applications, for instance, for geological sequestration of CO2, during which CO2 is injected at high pressure into deep saline aquifers. Due to the density difference between the C02-saturated brine and the surrounding brine, a downward migration of CO2 into deeper regions, where the risk of leakage is reduced, takes place. Similarly, undesired spontaneous mobilization of potentially hazardous substances that might endanger groundwater quality can be triggered by density differences. Over the last years, these effects have been investigated with the help of numerical groundwater models. Major challenges in simulating density-driven instabilities arise from the different scales of interest involved, i.e., the scale at which instabilities are triggered and the aquifer scale over which long-term processes take place. An accurate numerical reproduction is possible, only if the finest scale is captured. For large aquifers, this leads to problems with a large number of unknowns. Advanced numerical methods are required to efficiently solve these problems with today's available computational resources. Beside efficient iterative solvers, multiscale methods are available to solve large numerical systems. Originally, multiscale methods have been developed as upscaling-downscaling techniques to resolve strong permeability contrasts. In this case, two static grids are used: one is chosen with respect to the resolution of the permeability field (fine grid); the other (coarse grid) is used to approximate the fine-scale problem at low computational costs. The quality of the multiscale solution can be iteratively improved to avoid large errors in case of complex permeability structures. Adaptive formulations, which restrict the iterative update to domains with large gradients, enable limiting the additional computational costs of the iterations. In case of density-driven instabilities, additional spatial scales appear which change with time. Flexible adaptive methods are required to account for these emerging dynamic scales. The objective of this work is to develop an adaptive multiscale formulation for the efficient and accurate simulation of density-driven instabilities. We consider the Multiscale Finite-Volume (MsFV) method, which is well suited for simulations including the solution of transport problems as it guarantees a conservative velocity field. In the first part of this thesis, we investigate the applicability of the standard MsFV method to density- driven flow problems. We demonstrate that approximations in MsFV may trigger unphysical fingers and iterative corrections are necessary. Adaptive formulations (e.g., limiting a refined solution to domains with large concentration gradients where fingers form) can be used to balance the extra costs. We also propose to use the MsFV method as downscaling technique: the coarse discretization is used in areas without significant change in the flow field whereas the problem is refined in the zones of interest. This enables accounting for the dynamic change in scales of density-driven instabilities. In the second part of the thesis the MsFV algorithm, which originally employs one coarse level, is extended to an arbitrary number of coarse levels. We prove that this keeps the MsFV method efficient for problems with a large number of unknowns. In the last part of this thesis, we focus on the scales that control the evolution of density fingers. The identification of local and global flow patterns allows a coarse description at late times while conserving fine-scale details during onset stage. Results presented in this work advance the understanding of the Multiscale Finite-Volume method and offer efficient dynamic multiscale formulations to simulate density-driven instabilities. - Les nappes phréatiques caractérisées par des structures poreuses et des fractures très perméables représentent un intérêt particulier pour les hydrogéologues et ingénieurs environnementaux. Dans ces milieux, une large variété d'écoulements peut être observée. Les plus communs sont le transport de contaminants par les eaux souterraines, le transport réactif ou l'écoulement simultané de plusieurs phases non miscibles, comme le pétrole et l'eau. L'échelle qui caractérise ces écoulements est définie par l'interaction de l'hétérogénéité géologique et des processus physiques. Un fluide au repos dans l'espace interstitiel d'un milieu poreux peut être déstabilisé par des gradients de densité. Ils peuvent être induits par des changements locaux de température ou par dissolution d'un composé chimique. Les instabilités engendrées par des gradients de densité revêtent un intérêt particulier puisque qu'elles peuvent éventuellement compromettre la qualité des eaux. Un exemple frappant est la salinisation de l'eau douce dans les nappes phréatiques par pénétration d'eau salée plus dense dans les régions profondes. Dans le cas des écoulements gouvernés par les gradients de densité, les échelles caractéristiques de l'écoulement s'étendent de l'échelle poreuse où les phénomènes de croissance des instabilités s'opèrent, jusqu'à l'échelle des aquifères sur laquelle interviennent les phénomènes à temps long. Etant donné que les investigations in-situ sont pratiquement impossibles, les modèles numériques sont utilisés pour prédire et évaluer les risques liés aux instabilités engendrées par les gradients de densité. Une description correcte de ces phénomènes repose sur la description de toutes les échelles de l'écoulement dont la gamme peut s'étendre sur huit à dix ordres de grandeur dans le cas de grands aquifères. Il en résulte des problèmes numériques de grande taille qui sont très couteux à résoudre. Des schémas numériques sophistiqués sont donc nécessaires pour effectuer des simulations précises d'instabilités hydro-dynamiques à grande échelle. Dans ce travail, nous présentons différentes méthodes numériques qui permettent de simuler efficacement et avec précision les instabilités dues aux gradients de densité. Ces nouvelles méthodes sont basées sur les volumes finis multi-échelles. L'idée est de projeter le problème original à une échelle plus grande où il est moins coûteux à résoudre puis de relever la solution grossière vers l'échelle de départ. Cette technique est particulièrement adaptée pour résoudre des problèmes où une large gamme d'échelle intervient et évolue de manière spatio-temporelle. Ceci permet de réduire les coûts de calculs en limitant la description détaillée du problème aux régions qui contiennent un front de concentration mobile. Les aboutissements sont illustrés par la simulation de phénomènes tels que l'intrusion d'eau salée ou la séquestration de dioxyde de carbone.
Resumo:
Ces dernières années, de nombreuses recherches ont mis en évidence les effets toxiques des micropolluants organiques pour les espèces de nos lacs et rivières. Cependant, la plupart de ces études se sont focalisées sur la toxicité des substances individuelles, alors que les organismes sont exposés tous les jours à des milliers de substances en mélange. Or les effets de ces cocktails ne sont pas négligeables. Cette thèse de doctorat s'est ainsi intéressée aux modèles permettant de prédire le risque environnemental de ces cocktails pour le milieu aquatique. Le principal objectif a été d'évaluer le risque écologique des mélanges de substances chimiques mesurées dans le Léman, mais aussi d'apporter un regard critique sur les méthodologies utilisées afin de proposer certaines adaptations pour une meilleure estimation du risque. Dans la première partie de ce travail, le risque des mélanges de pesticides et médicaments pour le Rhône et pour le Léman a été établi en utilisant des approches envisagées notamment dans la législation européenne. Il s'agit d'approches de « screening », c'est-à-dire permettant une évaluation générale du risque des mélanges. Une telle approche permet de mettre en évidence les substances les plus problématiques, c'est-à-dire contribuant le plus à la toxicité du mélange. Dans notre cas, il s'agit essentiellement de 4 pesticides. L'étude met également en évidence que toutes les substances, même en trace infime, contribuent à l'effet du mélange. Cette constatation a des implications en terme de gestion de l'environnement. En effet, ceci implique qu'il faut réduire toutes les sources de polluants, et pas seulement les plus problématiques. Mais l'approche proposée présente également un biais important au niveau conceptuel, ce qui rend son utilisation discutable, en dehors d'un screening, et nécessiterait une adaptation au niveau des facteurs de sécurité employés. Dans une deuxième partie, l'étude s'est portée sur l'utilisation des modèles de mélanges dans le calcul de risque environnemental. En effet, les modèles de mélanges ont été développés et validés espèce par espèce, et non pour une évaluation sur l'écosystème en entier. Leur utilisation devrait donc passer par un calcul par espèce, ce qui est rarement fait dû au manque de données écotoxicologiques à disposition. Le but a été donc de comparer, avec des valeurs générées aléatoirement, le calcul de risque effectué selon une méthode rigoureuse, espèce par espèce, avec celui effectué classiquement où les modèles sont appliqués sur l'ensemble de la communauté sans tenir compte des variations inter-espèces. Les résultats sont dans la majorité des cas similaires, ce qui valide l'approche utilisée traditionnellement. En revanche, ce travail a permis de déterminer certains cas où l'application classique peut conduire à une sous- ou sur-estimation du risque. Enfin, une dernière partie de cette thèse s'est intéressée à l'influence que les cocktails de micropolluants ont pu avoir sur les communautés in situ. Pour ce faire, une approche en deux temps a été adoptée. Tout d'abord la toxicité de quatorze herbicides détectés dans le Léman a été déterminée. Sur la période étudiée, de 2004 à 2009, cette toxicité due aux herbicides a diminué, passant de 4% d'espèces affectées à moins de 1%. Ensuite, la question était de savoir si cette diminution de toxicité avait un impact sur le développement de certaines espèces au sein de la communauté des algues. Pour ce faire, l'utilisation statistique a permis d'isoler d'autres facteurs pouvant avoir une influence sur la flore, comme la température de l'eau ou la présence de phosphates, et ainsi de constater quelles espèces se sont révélées avoir été influencées, positivement ou négativement, par la diminution de la toxicité dans le lac au fil du temps. Fait intéressant, une partie d'entre-elles avait déjà montré des comportements similaires dans des études en mésocosmes. En conclusion, ce travail montre qu'il existe des modèles robustes pour prédire le risque des mélanges de micropolluants sur les espèces aquatiques, et qu'ils peuvent être utilisés pour expliquer le rôle des substances dans le fonctionnement des écosystèmes. Toutefois, ces modèles ont bien sûr des limites et des hypothèses sous-jacentes qu'il est important de considérer lors de leur application. - Depuis plusieurs années, les risques que posent les micropolluants organiques pour le milieu aquatique préoccupent grandement les scientifiques ainsi que notre société. En effet, de nombreuses recherches ont mis en évidence les effets toxiques que peuvent avoir ces substances chimiques sur les espèces de nos lacs et rivières, quand elles se retrouvent exposées à des concentrations aiguës ou chroniques. Cependant, la plupart de ces études se sont focalisées sur la toxicité des substances individuelles, c'est à dire considérées séparément. Actuellement, il en est de même dans les procédures de régulation européennes, concernant la partie évaluation du risque pour l'environnement d'une substance. Or, les organismes sont exposés tous les jours à des milliers de substances en mélange, et les effets de ces "cocktails" ne sont pas négligeables. L'évaluation du risque écologique que pose ces mélanges de substances doit donc être abordé par de la manière la plus appropriée et la plus fiable possible. Dans la première partie de cette thèse, nous nous sommes intéressés aux méthodes actuellement envisagées à être intégrées dans les législations européennes pour l'évaluation du risque des mélanges pour le milieu aquatique. Ces méthodes sont basées sur le modèle d'addition des concentrations, avec l'utilisation des valeurs de concentrations des substances estimées sans effet dans le milieu (PNEC), ou à partir des valeurs des concentrations d'effet (CE50) sur certaines espèces d'un niveau trophique avec la prise en compte de facteurs de sécurité. Nous avons appliqué ces méthodes à deux cas spécifiques, le lac Léman et le Rhône situés en Suisse, et discuté les résultats de ces applications. Ces premières étapes d'évaluation ont montré que le risque des mélanges pour ces cas d'étude atteint rapidement une valeur au dessus d'un seuil critique. Cette valeur atteinte est généralement due à deux ou trois substances principales. Les procédures proposées permettent donc d'identifier les substances les plus problématiques pour lesquelles des mesures de gestion, telles que la réduction de leur entrée dans le milieu aquatique, devraient être envisagées. Cependant, nous avons également constaté que le niveau de risque associé à ces mélanges de substances n'est pas négligeable, même sans tenir compte de ces substances principales. En effet, l'accumulation des substances, même en traces infimes, atteint un seuil critique, ce qui devient plus difficile en terme de gestion du risque. En outre, nous avons souligné un manque de fiabilité dans ces procédures, qui peuvent conduire à des résultats contradictoires en terme de risque. Ceci est lié à l'incompatibilité des facteurs de sécurité utilisés dans les différentes méthodes. Dans la deuxième partie de la thèse, nous avons étudié la fiabilité de méthodes plus avancées dans la prédiction de l'effet des mélanges pour les communautés évoluant dans le système aquatique. Ces méthodes reposent sur le modèle d'addition des concentrations (CA) ou d'addition des réponses (RA) appliqués sur les courbes de distribution de la sensibilité des espèces (SSD) aux substances. En effet, les modèles de mélanges ont été développés et validés pour être appliqués espèce par espèce, et non pas sur plusieurs espèces agrégées simultanément dans les courbes SSD. Nous avons ainsi proposé une procédure plus rigoureuse, pour l'évaluation du risque d'un mélange, qui serait d'appliquer d'abord les modèles CA ou RA à chaque espèce séparément, et, dans une deuxième étape, combiner les résultats afin d'établir une courbe SSD du mélange. Malheureusement, cette méthode n'est pas applicable dans la plupart des cas, car elle nécessite trop de données généralement indisponibles. Par conséquent, nous avons comparé, avec des valeurs générées aléatoirement, le calcul de risque effectué selon cette méthode plus rigoureuse, avec celle effectuée traditionnellement, afin de caractériser la robustesse de cette approche qui consiste à appliquer les modèles de mélange sur les courbes SSD. Nos résultats ont montré que l'utilisation de CA directement sur les SSDs peut conduire à une sous-estimation de la concentration du mélange affectant 5 % ou 50% des espèces, en particulier lorsque les substances présentent un grand écart- type dans leur distribution de la sensibilité des espèces. L'application du modèle RA peut quant à lui conduire à une sur- ou sous-estimations, principalement en fonction de la pente des courbes dose- réponse de chaque espèce composant les SSDs. La sous-estimation avec RA devient potentiellement importante lorsque le rapport entre la EC50 et la EC10 de la courbe dose-réponse des espèces est plus petit que 100. Toutefois, la plupart des substances, selon des cas réels, présentent des données d' écotoxicité qui font que le risque du mélange calculé par la méthode des modèles appliqués directement sur les SSDs reste cohérent et surestimerait plutôt légèrement le risque. Ces résultats valident ainsi l'approche utilisée traditionnellement. Néanmoins, il faut garder à l'esprit cette source d'erreur lorsqu'on procède à une évaluation du risque d'un mélange avec cette méthode traditionnelle, en particulier quand les SSD présentent une distribution des données en dehors des limites déterminées dans cette étude. Enfin, dans la dernière partie de cette thèse, nous avons confronté des prédictions de l'effet de mélange avec des changements biologiques observés dans l'environnement. Dans cette étude, nous avons utilisé des données venant d'un suivi à long terme d'un grand lac européen, le lac Léman, ce qui offrait la possibilité d'évaluer dans quelle mesure la prédiction de la toxicité des mélanges d'herbicide expliquait les changements dans la composition de la communauté phytoplanctonique. Ceci à côté d'autres paramètres classiques de limnologie tels que les nutriments. Pour atteindre cet objectif, nous avons déterminé la toxicité des mélanges sur plusieurs années de 14 herbicides régulièrement détectés dans le lac, en utilisant les modèles CA et RA avec les courbes de distribution de la sensibilité des espèces. Un gradient temporel de toxicité décroissant a pu être constaté de 2004 à 2009. Une analyse de redondance et de redondance partielle, a montré que ce gradient explique une partie significative de la variation de la composition de la communauté phytoplanctonique, même après avoir enlevé l'effet de toutes les autres co-variables. De plus, certaines espèces révélées pour avoir été influencées, positivement ou négativement, par la diminution de la toxicité dans le lac au fil du temps, ont montré des comportements similaires dans des études en mésocosmes. On peut en conclure que la toxicité du mélange herbicide est l'un des paramètres clés pour expliquer les changements de phytoplancton dans le lac Léman. En conclusion, il existe diverses méthodes pour prédire le risque des mélanges de micropolluants sur les espèces aquatiques et celui-ci peut jouer un rôle dans le fonctionnement des écosystèmes. Toutefois, ces modèles ont bien sûr des limites et des hypothèses sous-jacentes qu'il est important de considérer lors de leur application, avant d'utiliser leurs résultats pour la gestion des risques environnementaux. - For several years now, the scientists as well as the society is concerned by the aquatic risk organic micropollutants may pose. Indeed, several researches have shown the toxic effects these substances may induce on organisms living in our lakes or rivers, especially when they are exposed to acute or chronic concentrations. However, most of the studies focused on the toxicity of single compounds, i.e. considered individually. The same also goes in the current European regulations concerning the risk assessment procedures for the environment of these substances. But aquatic organisms are typically exposed every day simultaneously to thousands of organic compounds. The toxic effects resulting of these "cocktails" cannot be neglected. The ecological risk assessment of mixtures of such compounds has therefore to be addressed by scientists in the most reliable and appropriate way. In the first part of this thesis, the procedures currently envisioned for the aquatic mixture risk assessment in European legislations are described. These methodologies are based on the mixture model of concentration addition and the use of the predicted no effect concentrations (PNEC) or effect concentrations (EC50) with assessment factors. These principal approaches were applied to two specific case studies, Lake Geneva and the River Rhône in Switzerland, including a discussion of the outcomes of such applications. These first level assessments showed that the mixture risks for these studied cases exceeded rapidly the critical value. This exceeding is generally due to two or three main substances. The proposed procedures allow therefore the identification of the most problematic substances for which management measures, such as a reduction of the entrance to the aquatic environment, should be envisioned. However, it was also showed that the risk levels associated with mixtures of compounds are not negligible, even without considering these main substances. Indeed, it is the sum of the substances that is problematic, which is more challenging in term of risk management. Moreover, a lack of reliability in the procedures was highlighted, which can lead to contradictory results in terms of risk. This result is linked to the inconsistency in the assessment factors applied in the different methods. In the second part of the thesis, the reliability of the more advanced procedures to predict the mixture effect to communities in the aquatic system were investigated. These established methodologies combine the model of concentration addition (CA) or response addition (RA) with species sensitivity distribution curves (SSD). Indeed, the mixture effect predictions were shown to be consistent only when the mixture models are applied on a single species, and not on several species simultaneously aggregated to SSDs. Hence, A more stringent procedure for mixture risk assessment is proposed, that would be to apply first the CA or RA models to each species separately and, in a second step, to combine the results to build an SSD for a mixture. Unfortunately, this methodology is not applicable in most cases, because it requires large data sets usually not available. Therefore, the differences between the two methodologies were studied with datasets created artificially to characterize the robustness of the traditional approach applying models on species sensitivity distribution. The results showed that the use of CA on SSD directly might lead to underestimations of the mixture concentration affecting 5% or 50% of species, especially when substances present a large standard deviation of the distribution from the sensitivity of the species. The application of RA can lead to over- or underestimates, depending mainly on the slope of the dose-response curves of the individual species. The potential underestimation with RA becomes important when the ratio between the EC50 and the EC10 for the dose-response curve of the species composing the SSD are smaller than 100. However, considering common real cases of ecotoxicity data for substances, the mixture risk calculated by the methodology applying mixture models directly on SSDs remains consistent and would rather slightly overestimate the risk. These results can be used as a theoretical validation of the currently applied methodology. Nevertheless, when assessing the risk of mixtures, one has to keep in mind this source of error with this classical methodology, especially when SSDs present a distribution of the data outside the range determined in this study Finally, in the last part of this thesis, we confronted the mixture effect predictions with biological changes observed in the environment. In this study, long-term monitoring of a European great lake, Lake Geneva, provides the opportunity to assess to what extent the predicted toxicity of herbicide mixtures explains the changes in the composition of the phytoplankton community next to other classical limnology parameters such as nutrients. To reach this goal, the gradient of the mixture toxicity of 14 herbicides regularly detected in the lake was calculated, using concentration addition and response addition models. A decreasing temporal gradient of toxicity was observed from 2004 to 2009. Redundancy analysis and partial redundancy analysis showed that this gradient explains a significant portion of the variation in phytoplankton community composition, even when having removed the effect of all other co-variables. Moreover, some species that were revealed to be influenced positively or negatively, by the decrease of toxicity in the lake over time, showed similar behaviors in mesocosms studies. It could be concluded that the herbicide mixture toxicity is one of the key parameters to explain phytoplankton changes in Lake Geneva. To conclude, different methods exist to predict the risk of mixture in the ecosystems. But their reliability varies depending on the underlying hypotheses. One should therefore carefully consider these hypotheses, as well as the limits of the approaches, before using the results for environmental risk management
Resumo:
Summary : International comparisons in the area of victimization, particularly in the field of violence against women, are fraught with methodological problems that previous research has not systematically addressed, and whose answer does not seem to be agreed up~n. For obvious logistic and financial reasons, international studies on violence against women (i.e. studies that administer the same instrument in different countries). are seldom; therefore, researchers are bound to resort to secondary comparisons. Many studies simply juxtapose their results to the ones of previous wòrk or to findings obtained in different contexts, in order to offer an allegedly comparative perspective to their conclusions. If, most of the time, researchers indicate the methodological limitations of a direct comparison, it is not rare that these do not result in concrete methodological controls. Yet, many studies have shown the influence of surveys methodological parameters on findings, listing recommendations fora «best practice» of research. Although, over the past decades, violence against women surveys have become more and more similar -tending towards a sort of uniformization that could be interpreted as a passive consensus -these instruments retain more or less subtle differences that are still susceptible to influence the validity of a comparison. Yet, only a small number of studies have directly worked on the comparability of violence against women data, striving to control the methodological parameters of the surveys in order to guarantee the validity of their comparisons. The goal of this work is to compare data from two national surveys on violence against women: the Swiss component of the International Violence Against Women Survey [CH-IVAWS] and the National Violence Against Women Survey [NVAWS] administered in the United States. The choice of these studies certainly ensues from the author's affiliations; however, it is far from being trivial. Indeed, the criminological field currently endows American and Anglo-Saxon literature with a predominant space, compelling researchers from other countries to almost do the splits to interpret their results in the light of previous work or to develop effective interventions in their own context. Turning to hypotheses or concepts developed in a specific framework inevitably raises the issue of their applicability to another context, i.e. the Swiss context, if not at least European. This problematic then takes on an interest that goes beyond the particular topic of violence against women, adding to its relevance. This work articulates around three axes. First, it shows the way survey characteristics influence estimates. The comparability of the nature of the CH-IVAWS and NVAWS, their sampling design and the characteristics of their administration are discussed. The definitions used, the operationalization of variables based on comparable items, the control of reference periods, as well as the nature of the victim-offender relationship are included among controlled factors. This study establishes content validity within and across studies, presenting a systematic process destined to maximize the comparability of secondary data. Implications of the process are illustrated with the successive presentation of comparable and non-comparable operationalizations of computed variables. Measuring violence against. women in Switzerland and the United-States, this work compares the prevalence of different forms (threats, physical violence and sexual violence) and types of violence (partner and nonpartner violence). Second, it endeavors to analyze concepts of multivictimization (i.e. experiencing different forms of victimization), repeat victimization (i.e. experiencing the same form of violence more than once), and revictimization (i.e. the link between childhood and adulthood victimization) in a comparative -and comparable -approach. Third, aiming at understanding why partner violence appears higher in the United States, while victims of nonpartners are more frequent in Switzerland, as well as in other European countries, different victimization correlates are examined. This research contributes to a better understanding of the relevance of controlling methodological parameters in comparisons across studies, as it illustrates, systematically, the imposed controls and their implications on quantitative data. Moreover, it details how ignoring these parameters might lead to erroneous conclusions, statistically as well as theoretically. The conclusion of the study puts into a wider perspective the discussion of differences and similarities of violence against women in Switzerland and the United States, and integrates recommendations as to the relevance and validity of international comparisons, whatever the'field they are conducted in. Résumé: Les comparaisons internationales dans le domaine de la victimisation, et plus particulièrement en ce qui concerne les violences envers les femmes, se caractérisent par des problèmes méthodologiques que les recherches antérieures n'ont pas systématiquement adressés, et dont la réponse ne semble pas connaître de consensus. Pour des raisons logistiques et financières évidentes, les études internationales sur les violences envers les femmes (c.-à-d. les études utilisant un même instrument dans différents pays) sont rares, aussi les chercheurs sont-ils contraints de se tourner vers des comparaisons secondaires. Beaucoup de recherches juxtaposent alors simplement leurs résultats à ceux de travaux antérieurs ou à des résultats obtenus dans d'autres contextes, afin d'offrir à leurs conclusions une perspective prétendument comparative. Si, le plus souvent, les auteurs indiquent les limites méthodologiques d'une comparaison directe, il est fréquent que ces dernières ne se traduisent pas par des contrôles méthodologiques concrets. Et pourtant, quantité de travaux ont mis en évidence l'influence des paramètres méthodologiques des enquêtes sur les résultats obtenus, érigeant des listes de recommandations pour une «meilleure pratique» de la recherche. Bien que, ces dernières décennies, les sondages sur les violences envers les femmes soient devenus de plus en plus similaires -tendant, vers une certaine uniformisation que l'on peut interpréter comme un consensus passif-, il n'en demeure pas moins que ces instruments possèdent des différences plus ou moins subtiles, mais toujours susceptibles d'influencer la validité d'une comparaison. Pourtant, seules quelques recherches ont directement travaillé sur la comparabilité des données sur les violences envers les femmes, ayant à coeur de contrôler les paramètres méthodologiques des études utilisées afin de garantir la validité de leurs comparaisons. L'objectif de ce travail est la comparaison des données de deux sondages nationaux sur les violences envers les femmes: le composant suisse de l'International Violence Against Women Survey [CHIVAWSj et le National Violence Against Women Survey [NVAWS) administré aux États-Unis. Le choix de ces deux études découle certes des affiliations de l'auteure, cependant il est loin d'être anodin. Le champ criminologique actuel confère, en effet, une place prépondérante à la littérature américaine et anglo-saxonne, contraignant ainsi les chercheurs d'autres pays à un exercice proche du grand écart pour interpréter leurs résultats à la lumière des travaux antérieurs ou développer des interventions efficaces dans leur propre contexte. Le fait de recourir à des hypothèses et des concepts développés dans un cadre spécifique pose inévitablement la question de leur applicabilité à un autre contexte, soit ici le contexte suisse, sinon du moins européen. Cette problématique revêt alors un intérêt qui dépasse la thématique spécifique des violences envers les femmes, ce qui ajoute à sa pertinence. Ce travail s'articule autour de trois axes. Premièrement, il met en évidence la manière dont les caractéristiques d'un sondage influencent les estimations qui en découlent. La comparabilité de la nature du CH-IVAWS et du NVAWS, de leur processus d'échantillonnage et des caractéristiques de leur administration est discutée. Les définitions utilisées, l'opérationnalisation des variables sur la base d'items comparables, le contrôle des périodes de référence, ainsi que la nature de la relation victime-auteur figurent également parmi les facteurs contrôlés. Ce travail établit ainsi la validité de contenu intra- et inter-études, offrant un processus systématique destiné à maximiser la comparabilité des données secondaires. Les implications de cette démarche sont illustrées avec la présentation successive d'opérationnalisations comparables et non-comparables des variables construites. Mesurant les violences envers les femmes en Suisse et aux États-Unis, ce travail compare la prévalence de plusieurs formes (menaces, violences physiques et violences sexuelles) et types de violence (violences partenaires et non-partenaires). 11 s'attache également à analyser les concepts de multivictimisation (c.-à-d. le fait de subir plusieurs formes de victimisation), victimisation répétée (c.-à.-d. le fait de subir plusieurs incidents de même forme) et revictimisation (c.-à-d. le lien entre la victimisation dans l'enfance et à l'âge adulte) dans une approche comparative - et comparable. Dans un troisième temps, cherchant à comprendre pourquoi la violence des partenaires apparaît plus fréquente aux États-Unis, tandis que les victimes de non-partenaires sont plus nombreuses en Suisse, et dans d'autres pays européens, différents facteurs associés à la victimisation sont évalués. Cette recherche participe d'une meilleure compréhension de la pertinence du contrôle des paramètres méthodologiques dans les comparaisons entre études puisqu'elle illustre, pas à pas, les contrôles imposés et leurs effets sur les données quantitatives, et surtout comment l'ignorance de ces paramètres peut conduire à des conclusions erronées, tant statistiquement que théoriquement. La conclusion replace, dans un contexte plus large, la discussion des différences et des similitudes observées quant à la prévalence des violences envers les femmes en Suisse et aux États-Unis, et intègre des recommandations quant à la pertinence et à la validité des comparaisons internationales, cela quel que soit le domaine considéré.
Resumo:
Résumé Suite aux recentes avancées technologiques, les archives d'images digitales ont connu une croissance qualitative et quantitative sans précédent. Malgré les énormes possibilités qu'elles offrent, ces avancées posent de nouvelles questions quant au traitement des masses de données saisies. Cette question est à la base de cette Thèse: les problèmes de traitement d'information digitale à très haute résolution spatiale et/ou spectrale y sont considérés en recourant à des approches d'apprentissage statistique, les méthodes à noyau. Cette Thèse étudie des problèmes de classification d'images, c'est à dire de catégorisation de pixels en un nombre réduit de classes refletant les propriétés spectrales et contextuelles des objets qu'elles représentent. L'accent est mis sur l'efficience des algorithmes, ainsi que sur leur simplicité, de manière à augmenter leur potentiel d'implementation pour les utilisateurs. De plus, le défi de cette Thèse est de rester proche des problèmes concrets des utilisateurs d'images satellite sans pour autant perdre de vue l'intéret des méthodes proposées pour le milieu du machine learning dont elles sont issues. En ce sens, ce travail joue la carte de la transdisciplinarité en maintenant un lien fort entre les deux sciences dans tous les développements proposés. Quatre modèles sont proposés: le premier répond au problème de la haute dimensionalité et de la redondance des données par un modèle optimisant les performances en classification en s'adaptant aux particularités de l'image. Ceci est rendu possible par un système de ranking des variables (les bandes) qui est optimisé en même temps que le modèle de base: ce faisant, seules les variables importantes pour résoudre le problème sont utilisées par le classifieur. Le manque d'information étiquétée et l'incertitude quant à sa pertinence pour le problème sont à la source des deux modèles suivants, basés respectivement sur l'apprentissage actif et les méthodes semi-supervisées: le premier permet d'améliorer la qualité d'un ensemble d'entraînement par interaction directe entre l'utilisateur et la machine, alors que le deuxième utilise les pixels non étiquetés pour améliorer la description des données disponibles et la robustesse du modèle. Enfin, le dernier modèle proposé considère la question plus théorique de la structure entre les outputs: l'intègration de cette source d'information, jusqu'à présent jamais considérée en télédétection, ouvre des nouveaux défis de recherche. Advanced kernel methods for remote sensing image classification Devis Tuia Institut de Géomatique et d'Analyse du Risque September 2009 Abstract The technical developments in recent years have brought the quantity and quality of digital information to an unprecedented level, as enormous archives of satellite images are available to the users. However, even if these advances open more and more possibilities in the use of digital imagery, they also rise several problems of storage and treatment. The latter is considered in this Thesis: the processing of very high spatial and spectral resolution images is treated with approaches based on data-driven algorithms relying on kernel methods. In particular, the problem of image classification, i.e. the categorization of the image's pixels into a reduced number of classes reflecting spectral and contextual properties, is studied through the different models presented. The accent is put on algorithmic efficiency and the simplicity of the approaches proposed, to avoid too complex models that would not be used by users. The major challenge of the Thesis is to remain close to concrete remote sensing problems, without losing the methodological interest from the machine learning viewpoint: in this sense, this work aims at building a bridge between the machine learning and remote sensing communities and all the models proposed have been developed keeping in mind the need for such a synergy. Four models are proposed: first, an adaptive model learning the relevant image features has been proposed to solve the problem of high dimensionality and collinearity of the image features. This model provides automatically an accurate classifier and a ranking of the relevance of the single features. The scarcity and unreliability of labeled. information were the common root of the second and third models proposed: when confronted to such problems, the user can either construct the labeled set iteratively by direct interaction with the machine or use the unlabeled data to increase robustness and quality of the description of data. Both solutions have been explored resulting into two methodological contributions, based respectively on active learning and semisupervised learning. Finally, the more theoretical issue of structured outputs has been considered in the last model, which, by integrating outputs similarity into a model, opens new challenges and opportunities for remote sensing image processing.
Resumo:
Suite à la demande du Président de la République de disposer d'indicateurs de mortalité en établissements de santé » (discours du 18 septembre 2008 sur le thème de la politique de la santé et de la réforme du système de soins), la Direction de la recherche, des études, de l'évaluation et des statistiques (DREES) a piloté en 2009, en lien avec la Direction générale de l'offre de soins (DGOS) et la Haute autorité de santé (HAS), l'instruction des aspects méthodologiques relatifs à la construction de ces indicateurs de mortalité. Cette revue de littérature portant sur les différentes méthodes d'ajustement a été réalisée dans ce cadre, à la demande conjointe de la DREES et de la HAS.Ce rapport décrit les méthodes et modèles d'estimation et d'ajustement de la mortalité hospitalière identifiées dans la littérature.Il ressort de cette revue, que d'une manière générale, trois questions méthodologiques majeures préoccupent les épidémiologistes, les chercheurs et les décideurs s'intéressant à l'indicateur de la mortalité hospitalière : i) premièrement, sur l'opportunité d'établir l'indicateur de mortalité hospitalière à partir de groupes de population de patients homogènes définis par des pathologies et/ou des procédures médicales/chirurgicales cibles ; ii) deuxièmement, sur le type d'approche analytique et de l'intérêt de prendre en compte plusieurs niveaux dans l'analyse statistique ; iii) enfin troisièmement, sur le choix des variables d'ajustement permettant de contrôler les différences de case-mix entre plusieurs établissements ou groupes de patients pour réaliser des comparaisons. [Ed.]
Resumo:
Aquest dossier es titula "Jeanne Hersch" i, això no obstant, començaré referint-me a un diccionari i a Hannah Arendt (1906-1975). Prego un temps de benevolència per al següent desplegament de dades que, en aparença, no vénen a tomb. L'any 1979 es publicava a Madrid la sisena edició d'una obra monumental, el Diccionario de Filosofía de José Ferrater Mora (1912-1991). Aquesta edició fou reimpresa, si més no, set cops en vida del seu autor. La setena reimpressió és de 1990,1 i és la que em serveix per a allò que vull comentar aquí.
Resumo:
Abstract : This work is concerned with the development and application of novel unsupervised learning methods, having in mind two target applications: the analysis of forensic case data and the classification of remote sensing images. First, a method based on a symbolic optimization of the inter-sample distance measure is proposed to improve the flexibility of spectral clustering algorithms, and applied to the problem of forensic case data. This distance is optimized using a loss function related to the preservation of neighborhood structure between the input space and the space of principal components, and solutions are found using genetic programming. Results are compared to a variety of state-of--the-art clustering algorithms. Subsequently, a new large-scale clustering method based on a joint optimization of feature extraction and classification is proposed and applied to various databases, including two hyperspectral remote sensing images. The algorithm makes uses of a functional model (e.g., a neural network) for clustering which is trained by stochastic gradient descent. Results indicate that such a technique can easily scale to huge databases, can avoid the so-called out-of-sample problem, and can compete with or even outperform existing clustering algorithms on both artificial data and real remote sensing images. This is verified on small databases as well as very large problems. Résumé : Ce travail de recherche porte sur le développement et l'application de méthodes d'apprentissage dites non supervisées. Les applications visées par ces méthodes sont l'analyse de données forensiques et la classification d'images hyperspectrales en télédétection. Dans un premier temps, une méthodologie de classification non supervisée fondée sur l'optimisation symbolique d'une mesure de distance inter-échantillons est proposée. Cette mesure est obtenue en optimisant une fonction de coût reliée à la préservation de la structure de voisinage d'un point entre l'espace des variables initiales et l'espace des composantes principales. Cette méthode est appliquée à l'analyse de données forensiques et comparée à un éventail de méthodes déjà existantes. En second lieu, une méthode fondée sur une optimisation conjointe des tâches de sélection de variables et de classification est implémentée dans un réseau de neurones et appliquée à diverses bases de données, dont deux images hyperspectrales. Le réseau de neurones est entraîné à l'aide d'un algorithme de gradient stochastique, ce qui rend cette technique applicable à des images de très haute résolution. Les résultats de l'application de cette dernière montrent que l'utilisation d'une telle technique permet de classifier de très grandes bases de données sans difficulté et donne des résultats avantageusement comparables aux méthodes existantes.
Resumo:
A la demande d'une quarantaine de médecins du travail préoccupés par les conditions de travail dans les centres d'appels téléphoniques (CT) et la santé des téléopérateurs (TO), une enquête épidémiologique a été conduite par l'INRS.Il s'agit d'étudier, chez des TO, les relations entre, d'une part des contraintes de travail perçues et des marqueurs de santé et d'autre part, des facteurs organisationnels (FO) déclarés par les responsables de plateaux et des contraintes au travail perçues par les TO. Il s'agissait donc de mettre en évidence les caractéristiques organisationnelles qui ont des conséquences, via les contraintes, sur la santé en tenant compte des principaux facteurs de confusion.Quatorze FO ont été identifiés comme étant les plus souvent associés aux contraintes. Par ailleurs cette étude met en évidence que les relations entre FO et marqueurs de santé ne sont pas directes et passent le plus souvent par la perception des contraintes.Malgré son caractère transversal, cette étude permet de conclure sur le rôle de certains FO et l'implication de certaines contraintes dans l'apparition de problèmes de santé ouvrant des perspectives de prévention primaire et secondaire tant individuelle (dépistage, surveillance...) que collective (évaluation des conditions de travail et de la santé).Le questionnaire sur les caractéristiques organisationnelles, spécialement élaboré, sera bientôt accessible, et pourra être un instrument utile pour les évaluations de terrain. [Auteurs]