901 resultados para temporal speech information
Resumo:
In this work the landscape morphodynamics was used to check the strength and importance of the changes carried out by man on the environment over time, in Natal-RN municipality. The occupation of partially preserved natural areas was analyzed, but environmentally fragile, such as riparian forests, vegetation on the banks of waterways, which play regulatory role of the water flow, and the dunes, which guarantee the rapid recharge of aquifers. The impacts of urban sprawl in Natal Southern and West zones Were identified and characterized, through a detailed mapping in the period between 1969 and 2013 the main Permanent Preservation Areas - PPA (banks of rivers and lagoons, and dunes remaining) and their temporal changes. For this were used aerial photographs and satellite imagery, altimetry data, and pre-existing information, which allowed the creation of a spatial database, and evolution of maps of impervious areas, evolution of the use and occupation and Digital Terrain Model (DTM) from contour lines with contour interval of 1 meter. Based on this study presents a diagnosis of the environmental situation and the state of conservation of natural areas, over the last 44 years, compared to human pressures. In general, it was found that the urban settlement has advanced about 60% of studied natural areas. This advance was growing by the year 2006, when there was a slowdown in the process, except for the Environmental Protection Zone (EPZ) 03, where the river Pitimbú and your PPA, which experienced a more significant loss area. The urban occupation affected the natural drainage and contributed to the contamination of groundwater Natal, due to increased sealed area, the release of liquid and solid waste, as well as the removal of riparian vegetation. Changed irreversibly the natural landscape, and reduced the quality and quantity of water resources necessary for the population. Thus, it is necessary to stimulate the adoption of use and protection of PPA planning measures, to the preservation of the San Valley Region inserted into the EPZ 01, and integrate more remaining dunes, in good condition, this EPZ, due to the importance of those remaining on the environment and the maintenance of quality of life. It is suggested, also, protection of catchment areas, such as PPA ponds and Pitimbú River. Finally, it is expected that this study can assist the managers in making decisions in urban and environmental planning of the municipality
Resumo:
The characteristics profile of individuals who develop AIDS in Brazil has changed over time. Among these modifications, a worrying finding is the increased incidence of AIDS in the elderly across the country. But, however, is not yet clear whether the increase in AIDS cases is sufficient to produce a change in the trend of measures in recent years in the Brazilian states, and this increase has an effect from the socioeconomic and demographic indicators. In this sense, the objective of this study is to analyze the AIDS incidence rates among the elderly in Brazil and its effect on socioeconomic and demographic inequalities in the period 2000 to 2012. This is an ecological time-series study to meet behavior of the time series of the incidence rates of AIDS in the elderly from 2000 to 2012. the rates were calculated using the secondary data from Diseases Information System Notification and the Brazilian Institute of Geography and Statistics. Data were analyzed statistically to know the trends in incidence rates, by polynomial regression model and joinpoint log-linear regression model, but also the simple linear regression analysis to find the relationship of trends with variables socioeconomic and demographic. SPSS 20.0® and Joinpoint 4.1.1 programs were used. All tests were carried out considering a significance of 5%. After the analysis, in Brazil were reported 62,052 new cases of AIDS in the elderly from 2000 to 2012. During this period, a significant increase was found for males, both aged 50-59 years (APPC: 3.46 %, p <0.001), such as above 59 years (AAPC: 4.38%; p <0.001). For females, the increase was significant and has the largest increments in the time series, when compared to males in both age groups (AAPC: 4.62%, p <0.001 and AAPC: 6.53%; p <0.001) respectively. The largest increases are observed in women and in the states of North and Northeast. In the Southeast Region is observed stabilization of rates throughout the series. The reason of trends between the sexes had a significant reduction, but also an approach in both age groups of the study, reaching a ratio of 1.7 males for every female in the youngest age group. The trends were related to illiteracy rates, with increasing social inequality and the lowest human development in the Brazilian states. We conclude that in Brazil the incidence of AIDS in the elderly follows an increasing trend in individuals over 50 years. Noteworthy are the highest rates of study in women and in the states of North and Northeast. In this sense, the country needs to enhance policies towards older people with STD / AIDS, training health professionals and developing effective measures for the prevention and early diagnosis of infected people, especially in places with limited resources and high social inequality. In the long term, it is developing new studies to understand whether the measures taken were effective in reducing the trends identified in this study.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
A novel interrogation technique for fully distributed linearly chirped fiber Bragg grating (LCFBG) strain sensors with simultaneous high temporal and spatial resolution based on optical time-stretch frequency-domain reflectometry (OTS-FDR) is proposed and experimentally demonstrated. LCFBGs is a promising candidate for fully distributed sensors thanks to its longer grating length and broader reflection bandwidth compared to normal uniform FBGs. In the proposed system, two identical LCFBGs are employed in a Michelson interferometer setup with one grating serving as the reference grating whereas the other serving as the sensing element. Broadband spectral interferogram is formed and the strain information is encoded into the wavelength-dependent free spectral range (FSR). Ultrafast interrogation is achieved based on dispersion-induced time stretch such that the target spectral interferogram is mapped to a temporal interference waveform that can be captured in real-Time using a single-pixel photodector. The distributed strain along the sensing grating can be reconstructed from the instantaneous RF frequency of the captured waveform. High-spatial resolution is also obtained due to high-speed data acquisition. In a proof-of-concept experiment, ultrafast real-Time interrogation of fully-distributed grating sensors with various strain distributions is experimentally demonstrated. An ultrarapid measurement speed of 50 MHz with a high spatial resolution of 31.5 μm over a gauge length of 25 mm and a strain resolution of 9.1 μϵ have been achieved.
Resumo:
'Image volumes' refer to realizations of images in other dimensions such as time, spectrum, and focus. Recent advances in scientific, medical, and consumer applications demand improvements in image volume capture. Though image volume acquisition continues to advance, it maintains the same sampling mechanisms that have been used for decades; every voxel must be scanned and is presumed independent of its neighbors. Under these conditions, improving performance comes at the cost of increased system complexity, data rates, and power consumption.
This dissertation explores systems and methods capable of efficiently improving sensitivity and performance for image volume cameras, and specifically proposes several sampling strategies that utilize temporal coding to improve imaging system performance and enhance our awareness for a variety of dynamic applications.
Video cameras and camcorders sample the video volume (x,y,t) at fixed intervals to gain understanding of the volume's temporal evolution. Conventionally, one must reduce the spatial resolution to increase the framerate of such cameras. Using temporal coding via physical translation of an optical element known as a coded aperture, the compressive temporal imaging (CACTI) camera emonstrates a method which which to embed the temporal dimension of the video volume into spatial (x,y) measurements, thereby greatly improving temporal resolution with minimal loss of spatial resolution. This technique, which is among a family of compressive sampling strategies developed at Duke University, temporally codes the exposure readout functions at the pixel level.
Since video cameras nominally integrate the remaining image volume dimensions (e.g. spectrum and focus) at capture time, spectral (x,y,t,\lambda) and focal (x,y,t,z) image volumes are traditionally captured via sequential changes to the spectral and focal state of the system, respectively. The CACTI camera's ability to embed video volumes into images leads to exploration of other information within that video; namely, focal and spectral information. The next part of the thesis demonstrates derivative works of CACTI: compressive extended depth of field and compressive spectral-temporal imaging. These works successfully show the technique's extension of temporal coding to improve sensing performance in these other dimensions.
Geometrical optics-related tradeoffs, such as the classic challenges of wide-field-of-view and high resolution photography, have motivated the development of mulitscale camera arrays. The advent of such designs less than a decade ago heralds a new era of research- and engineering-related challenges. One significant challenge is that of managing the focal volume (x,y,z) over wide fields of view and resolutions. The fourth chapter shows advances on focus and image quality assessment for a class of multiscale gigapixel cameras developed at Duke.
Along the same line of work, we have explored methods for dynamic and adaptive addressing of focus via point spread function engineering. We demonstrate another form of temporal coding in the form of physical translation of the image plane from its nominal focal position. We demonstrate this technique's capability to generate arbitrary point spread functions.
Resumo:
Recent research into resting-state functional magnetic resonance imaging (fMRI) has shown that the brain is very active during rest. This thesis work utilizes blood oxygenation level dependent (BOLD) signals to investigate the spatial and temporal functional network information found within resting-state data, and aims to investigate the feasibility of extracting functional connectivity networks using different methods as well as the dynamic variability within some of the methods. Furthermore, this work looks into producing valid networks using a sparsely-sampled sub-set of the original data.
In this work we utilize four main methods: independent component analysis (ICA), principal component analysis (PCA), correlation, and a point-processing technique. Each method comes with unique assumptions, as well as strengths and limitations into exploring how the resting state components interact in space and time.
Correlation is perhaps the simplest technique. Using this technique, resting-state patterns can be identified based on how similar the time profile is to a seed region’s time profile. However, this method requires a seed region and can only identify one resting state network at a time. This simple correlation technique is able to reproduce the resting state network using subject data from one subject’s scan session as well as with 16 subjects.
Independent component analysis, the second technique, has established software programs that can be used to implement this technique. ICA can extract multiple components from a data set in a single analysis. The disadvantage is that the resting state networks it produces are all independent of each other, making the assumption that the spatial pattern of functional connectivity is the same across all the time points. ICA is successfully able to reproduce resting state connectivity patterns for both one subject and a 16 subject concatenated data set.
Using principal component analysis, the dimensionality of the data is compressed to find the directions in which the variance of the data is most significant. This method utilizes the same basic matrix math as ICA with a few important differences that will be outlined later in this text. Using this method, sometimes different functional connectivity patterns are identifiable but with a large amount of noise and variability.
To begin to investigate the dynamics of the functional connectivity, the correlation technique is used to compare the first and second halves of a scan session. Minor differences are discernable between the correlation results of the scan session halves. Further, a sliding window technique is implemented to study the correlation coefficients through different sizes of correlation windows throughout time. From this technique it is apparent that the correlation level with the seed region is not static throughout the scan length.
The last method introduced, a point processing method, is one of the more novel techniques because it does not require analysis of the continuous time points. Here, network information is extracted based on brief occurrences of high or low amplitude signals within a seed region. Because point processing utilizes less time points from the data, the statistical power of the results is lower. There are also larger variations in DMN patterns between subjects. In addition to boosted computational efficiency, the benefit of using a point-process method is that the patterns produced for different seed regions do not have to be independent of one another.
This work compares four unique methods of identifying functional connectivity patterns. ICA is a technique that is currently used by many scientists studying functional connectivity patterns. The PCA technique is not optimal for the level of noise and the distribution of the data sets. The correlation technique is simple and obtains good results, however a seed region is needed and the method assumes that the DMN regions is correlated throughout the entire scan. Looking at the more dynamic aspects of correlation changing patterns of correlation were evident. The last point-processing method produces a promising results of identifying functional connectivity networks using only low and high amplitude BOLD signals.
Resumo:
Tidal stream turbines could have several direct impacts upon pursuit-diving seabirds foraging within tidal stream environments (mean horizontal current speeds > 2 ms−1), including collisions and displacement. Understanding how foraging seabirds respond to temporally variable but predictable hydrodynamic conditions immediately around devices could identify when interactions between seabirds and devices are most likely to occur; information which would quantify the magnitude of potential impacts, and also facilitate the development of suitable mitigation measures. This study uses shore-based observational surveys and Finite Volume Community Ocean Model outputs to test whether temporally predictable hydrodynamic conditions (horizontal current speeds, water elevation, turbulence) influenced the density of foraging black guillemots Cepphus grylle and European shags Phalacrocorax aristotelis in a tidal stream environment in Orkney, United Kingdom, during the breeding season. These species are particularly vulnerable to interactions with devices due to their tendency to exploit benthic and epi-benthic prey on or near the seabed. The density of both species decreased as a function of horizontal current speeds, whereas the density of black guillemots also decreased as a function of water elevation. These relationships could be linked to higher energetic costs of dives in particularly fast horizontal current speeds (>3 ms−1) and deeper water. Therefore, interactions between these species and moving components seem unlikely at particularly high horizontal current speeds. Combining this information, with that on the rotation rates of moving components at lower horizontal current speeds, could be used to assess collision risk in this site during breeding seasons. It is also likely that moderating any device operation during both lowest water elevation and lowest horizontal current speeds could reduce the risk of collisions for these species in this site during this season. The approaches used in this study could have useful applications within Environmental Impact Assessments, and should be considered when assessing and mitigating negative impacts from specific devices within development sites.
Resumo:
Here we use two filtered speech tasks to investigate children’s processing of slow (<4 Hz) versus faster (∼33 Hz) temporal modulations in speech. We compare groups of children with either developmental dyslexia (Experiment 1) or speech and language impairments (SLIs, Experiment 2) to groups of typically-developing (TD) children age-matched to each disorder group. Ten nursery rhymes were filtered so that their modulation frequencies were either low-pass filtered (<4 Hz) or band-pass filtered (22 – 40 Hz). Recognition of the filtered nursery rhymes was tested in a picture recognition multiple choice paradigm. Children with dyslexia aged 10 years showed equivalent recognition overall to TD controls for both the low-pass and band-pass filtered stimuli, but showed significantly impaired acoustic learning during the experiment from low-pass filtered targets. Children with oral SLIs aged 9 years showed significantly poorer recognition of band pass filtered targets compared to their TD controls, and showed comparable acoustic learning effects to TD children during the experiment. The SLI samples were also divided into children with and without phonological difficulties. The children with both SLI and phonological difficulties were impaired in recognizing both kinds of filtered speech. These data are suggestive of impaired temporal sampling of the speech signal at different modulation rates by children with different kinds of developmental language disorder. Both SLI and dyslexic samples showed impaired discrimination of amplitude rise times. Implications of these findings for a temporal sampling framework for understanding developmental language disorders are discussed.
Resumo:
Speech and language ability is not a unitary concept; rather, it is made up of multiple abilities such as grammar, articulation and vocabulary. Young children from socio-economically deprived areas are more likely to experience language difficulties than those living in more affluent areas. However, less is known about individual differences in language difficulties amongst young children from socio-economically deprived backgrounds. The present research examined 172 four-year-old children from socio-economically deprived areas on standardised measures of core language, receptive vocabulary, articulation, information conveyed and grammar. Of the total sample, 26% had difficulty in at least one area of language. While most children with speech and language difficulty had generally low performance in all areas, around one in 10 displayed more uneven language abilities. For example, some children had generally good speech and language ability, but had specific difficulty with grammar. In such cases their difficulty is masked somewhat by good overall performance on language tests but they could still benefit from intervention in a specific area. The analysis also identified a number of typically achieving children who were identified as having borderline speech and language difficulty and should be closely monitored
Resumo:
Temporal replicate counts are often aggregated to improve model fit by reducing zero-inflation and count variability, and in the case of migration counts collected hourly throughout a migration, allows one to ignore nonindependence. However, aggregation can represent a loss of potentially useful information on the hourly or seasonal distribution of counts, which might impact our ability to estimate reliable trends. We simulated 20-year hourly raptor migration count datasets with known rate of change to test the effect of aggregating hourly counts to daily or annual totals on our ability to recover known trend. We simulated data for three types of species, to test whether results varied with species abundance or migration strategy: a commonly detected species, e.g., Northern Harrier, Circus cyaneus; a rarely detected species, e.g., Peregrine Falcon, Falco peregrinus; and a species typically counted in large aggregations with overdispersed counts, e.g., Broad-winged Hawk, Buteo platypterus. We compared accuracy and precision of estimated trends across species and count types (hourly/daily/annual) using hierarchical models that assumed a Poisson, negative binomial (NB) or zero-inflated negative binomial (ZINB) count distribution. We found little benefit of modeling zero-inflation or of modeling the hourly distribution of migration counts. For the rare species, trends analyzed using daily totals and an NB or ZINB data distribution resulted in a higher probability of detecting an accurate and precise trend. In contrast, trends of the common and overdispersed species benefited from aggregation to annual totals, and for the overdispersed species in particular, trends estimating using annual totals were more precise, and resulted in lower probabilities of estimating a trend (1) in the wrong direction, or (2) with credible intervals that excluded the true trend, as compared with hourly and daily counts.
Resumo:
Les réseaux de capteurs sont formés d’un ensemble de dispositifs capables de prendre individuellement des mesures d’un environnement particulier et d’échanger de l’information afin d’obtenir une représentation de haut niveau sur les activités en cours dans la zone d’intérêt. Une telle détection distribuée, avec de nombreux appareils situés à proximité des phénomènes d’intérêt, est pertinente dans des domaines tels que la surveillance, l’agriculture, l’observation environnementale, la surveillance industrielle, etc. Nous proposons dans cette thèse plusieurs approches pour effectuer l’optimisation des opérations spatio-temporelles de ces dispositifs, en déterminant où les placer dans l’environnement et comment les contrôler au fil du temps afin de détecter les cibles mobiles d’intérêt. La première nouveauté consiste en un modèle de détection réaliste représentant la couverture d’un réseau de capteurs dans son environnement. Nous proposons pour cela un modèle 3D probabiliste de la capacité de détection d’un capteur sur ses abords. Ce modèle inègre également de l’information sur l’environnement grâce à l’évaluation de la visibilité selon le champ de vision. À partir de ce modèle de détection, l’optimisation spatiale est effectuée par la recherche du meilleur emplacement et l’orientation de chaque capteur du réseau. Pour ce faire, nous proposons un nouvel algorithme basé sur la descente du gradient qui a été favorablement comparée avec d’autres méthodes génériques d’optimisation «boites noires» sous l’aspect de la couverture du terrain, tout en étant plus efficace en terme de calculs. Une fois que les capteurs placés dans l’environnement, l’optimisation temporelle consiste à bien couvrir un groupe de cibles mobiles dans l’environnement. D’abord, on effectue la prédiction de la position future des cibles mobiles détectées par les capteurs. La prédiction se fait soit à l’aide de l’historique des autres cibles qui ont traversé le même environnement (prédiction à long terme), ou seulement en utilisant les déplacements précédents de la même cible (prédiction à court terme). Nous proposons de nouveaux algorithmes dans chaque catégorie qui performent mieux ou produits des résultats comparables par rapport aux méthodes existantes. Une fois que les futurs emplacements de cibles sont prédits, les paramètres des capteurs sont optimisés afin que les cibles soient correctement couvertes pendant un certain temps, selon les prédictions. À cet effet, nous proposons une méthode heuristique pour faire un contrôle de capteurs, qui se base sur les prévisions probabilistes de trajectoire des cibles et également sur la couverture probabiliste des capteurs des cibles. Et pour terminer, les méthodes d’optimisation spatiales et temporelles proposées ont été intégrées et appliquées avec succès, ce qui démontre une approche complète et efficace pour l’optimisation spatio-temporelle des réseaux de capteurs.
Resumo:
Verbal fluency is the ability to produce a satisfying sequence of spoken words during a given time interval. The core of verbal fluency lies in the capacity to manage the executive aspects of language. The standard scores of the semantic verbal fluency test are broadly used in the neuropsychological assessment of the elderly, and different analytical methods are likely to extract even more information from the data generated in this test. Graph theory, a mathematical approach to analyze relations between items, represents a promising tool to understand a variety of neuropsychological states. This study reports a graph analysis of data generated by the semantic verbal fluency test by cognitively healthy elderly (NC), patients with Mild Cognitive Impairment – subtypes amnestic(aMCI) and amnestic multiple domain (a+mdMCI) - and patients with Alzheimer’s disease (AD). Sequences of words were represented as a speech graph in which every word corresponded to a node and temporal links between words were represented by directed edges. To characterize the structure of the data we calculated 13 speech graph attributes (SGAs). The individuals were compared when divided in three (NC – MCI – AD) and four (NC – aMCI – a+mdMCI – AD) groups. When the three groups were compared, significant differences were found in the standard measure of correct words produced, and three SGA: diameter, average shortest path, and network density. SGA sorted the elderly groups with good specificity and sensitivity. When the four groups were compared, the groups differed significantly in network density, except between the two MCI subtypes and NC and aMCI. The diameter of the network and the average shortest path were significantly different between the NC and AD, and between aMCI and AD. SGA sorted the elderly in their groups with good specificity and sensitivity, performing better than the standard score of the task. These findings provide support for a new methodological frame to assess the strength of semantic memory through the verbal fluency task, with potential to amplify the predictive power of this test. Graph analysis is likely to become clinically relevant in neurology and psychiatry, and may be particularly useful for the differential diagnosis of the elderly.
Resumo:
It has been recently shownthat localfield potentials (LFPs)fromthe auditory and visual cortices carry information about sensory stimuli, but whether this is a universal property of sensory cortices remains to be determined. Moreover, little is known about the temporal dynamics of sensory information contained in LFPs following stimulus onset. Here we investigated the time course of the amount of stimulus information in LFPs and spikes from the gustatory cortex of awake rats subjected to tastants and water delivery on the tongue. We found that the phase and amplitude of multiple LFP frequencies carry information about stimuli, which have specific time courses after stimulus delivery. The information carried by LFP phase and amplitude was independent within frequency bands, since the joint information exhibited neither synergy nor redundancy. Tastant information in LFPs was also independent and had a different time course from the information carried by spikes. These findings support the hypothesis that the brain uses different frequency channels to dynamically code for multiple features of a stimulus.
Resumo:
While news stories are an important traditional medium to broadcast and consume news, microblogging has recently emerged as a place where people can dis- cuss, disseminate, collect or report information about news. However, the massive information in the microblogosphere makes it hard for readers to keep up with these real-time updates. This is especially a problem when it comes to breaking news, where people are more eager to know “what is happening”. Therefore, this dis- sertation is intended as an exploratory effort to investigate computational methods to augment human effort when monitoring the development of breaking news on a given topic from a microblog stream by extractively summarizing the updates in a timely manner. More specifically, given an interest in a topic, either entered as a query or presented as an initial news report, a microblog temporal summarization system is proposed to filter microblog posts from a stream with three primary concerns: topical relevance, novelty, and salience. Considering the relatively high arrival rate of microblog streams, a cascade framework consisting of three stages is proposed to progressively reduce quantity of posts. For each step in the cascade, this dissertation studies methods that improve over current baselines. In the relevance filtering stage, query and document expansion techniques are applied to mitigate sparsity and vocabulary mismatch issues. The use of word embedding as a basis for filtering is also explored, using unsupervised and supervised modeling to characterize lexical and semantic similarity. In the novelty filtering stage, several statistical ways of characterizing novelty are investigated and ensemble learning techniques are used to integrate results from these diverse techniques. These results are compared with a baseline clustering approach using both standard and delay-discounted measures. In the salience filtering stage, because of the real-time prediction requirement a method of learning verb phrase usage from past relevant news reports is used in conjunction with some standard measures for characterizing writing quality. Following a Cranfield-like evaluation paradigm, this dissertation includes a se- ries of experiments to evaluate the proposed methods for each step, and for the end- to-end system. New microblog novelty and salience judgments are created, building on existing relevance judgments from the TREC Microblog track. The results point to future research directions at the intersection of social media, computational jour- nalism, information retrieval, automatic summarization, and machine learning.