924 resultados para temperature-based models
Resumo:
The early to mid-Holocene thermal optimum is a well-known feature in a wide variety of paleoclimate archives from the Northern Hemisphere. Reconstructed summer temperature anomalies from across northern Europe show a clear maximum around 6000 years before present (6 ka). For the marine realm, Holocene trends in sea-surface temperature reconstructions for the North Atlantic and Norwegian Sea do not exhibit a consistent pattern of early to mid- Holocene warmth. Sea-surface temperature records based on alkenones and diatoms generally show the existence of a warm early to mid-Holocene optimum. In contrast, several foraminifer and radiolarian based temperature records from the North Atlantic and Norwegian Sea show a cool mid- Holocene anomaly and a trend towards warmer temperatures in the late Holocene. In this paper, we revisit the foraminifer record from the Vøring Plateau in the Norwegian Sea. We also compare this record with published foraminifer based temperature reconstructions from the North Atlantic and with modelled (CCSM3) upper ocean temperatures. Model results indicate that while the seasonal summer warming of the seasurface was stronger during the mid-Holocene, sub-surface depths experienced a cooling. This hydrographic setting can explain the discrepancies between the Holocene trends exhibited by phytoplankton and zooplankton based temperature proxy records.
Resumo:
During the past five million yrs, benthic d18O records indicate a large range of climates, from warmer than today during the Pliocene Warm Period to considerably colder during glacials. Antarctic ice cores have revealed Pleistocene glacial-interglacial CO2 variability of 60-100 ppm, while sea level fluctuations of typically 125 m are documented by proxy data. However, in the pre-ice core period, CO2 and sea level proxy data are scarce and there is disagreement between different proxies and different records of the same proxy. This hampers comprehensive understanding of the long-term relations between CO2, sea level and climate. Here, we drive a coupled climate-ice sheet model over the past five million years, inversely forced by a stacked benthic d18O record. We obtain continuous simulations of benthic d18O, sea level and CO2 that are mutually consistent. Our model shows CO2 concentrations of 300 to 470 ppm during the Early Pliocene. Furthermore, we simulate strong CO2 variability during the Pliocene and Early Pleistocene. These features are broadly supported by existing and new d11B-based proxy CO2 data, but less by alkenone-based records. The simulated concentrations and variations therein are larger than expected from global mean temperature changes. Our findings thus suggest a smaller Earth System Sensitivity than previously thought. This is explained by a more restricted role of land ice variability in the Pliocene. The largest uncertainty in our simulation arises from the mass balance formulation of East Antarctica, which governs the variability in sea level, but only modestly affects the modeled CO2 concentrations.
Resumo:
The mid-Piacenzian warm period (3.264-3.025 Ma) of the Pliocene epoch has been proposed as a possible reference for future warm climate states. However, there is significant disagreement over the magnitude of high latitude warming between data and models for this period of time, raising questions about the driving mechanisms and responsible feedbacks. We have developed a new set of orbital-resolution alkenone-based sea surface temperature (SST) and ice rafted debris (IRD) records from the Norwegian Sea spanning 3.264-3.14 Ma. The SSTs in the Norwegian Sea were 2-3?°C warmer than the Holocene average, likely caused by the radiative effect of higher atmospheric CO2 concentrations. There is notable obliquity-driven SST variability with a range of 4?°C, shown by evolutive spectra. The correlation of SST variability with the presence of IRD suggests a common climate forcing acting across the Nordic Seas region. Changes of the SST gradient between the Norwegian Sea and North Atlantic sites suggest that the subpolar gyre was at least as strong as during the Holocene, and that the northward heat transport by the North Atlantic Current was comparable.
Resumo:
The ability to view and interact with 3D models has been happening for a long time. However, vision-based 3D modeling has only seen limited success in applications, as it faces many technical challenges. Hand-held mobile devices have changed the way we interact with virtual reality environments. Their high mobility and technical features, such as inertial sensors, cameras and fast processors, are especially attractive for advancing the state of the art in virtual reality systems. Also, their ubiquity and fast Internet connection open a path to distributed and collaborative development. However, such path has not been fully explored in many domains. VR systems for real world engineering contexts are still difficult to use, especially when geographically dispersed engineering teams need to collaboratively visualize and review 3D CAD models. Another challenge is the ability to rendering these environments at the required interactive rates and with high fidelity. In this document it is presented a virtual reality system mobile for visualization, navigation and reviewing large scale 3D CAD models, held under the CEDAR (Collaborative Engineering Design and Review) project. It’s focused on interaction using different navigation modes. The system uses the mobile device's inertial sensors and camera to allow users to navigate through large scale models. IT professionals, architects, civil engineers and oil industry experts were involved in a qualitative assessment of the CEDAR system, in the form of direct user interaction with the prototypes and audio-recorded interviews about the prototypes. The lessons learned are valuable and are presented on this document. Subsequently it was prepared a quantitative study on the different navigation modes to analyze the best mode to use it in a given situation.
Resumo:
This article examined the issue of whether or not the currency exchange rate, country risk, and cooperate tax rate affect decisions of multinational firms to invest in industrial clusters. First, if the exchange rate between a multinational company in an industry of diminishing returns to scale and a developing country is appreciated, then production in the developing country should increase. Second, if the investment period becomes longer, the currency exchange rate of a multinational company's country should be revalued more in order for it to further invest in the developing country. Third, if the investment period becomes longer, the developing country's risk should become less. Fourth, compensation for the developing country's high risk can be made by lowering its corporate tax rate.
Resumo:
This paper explains how the Armington-Krugman-Melitz supermodel developed by Dixon and Rimmer can be parameterized, and demonstrates that only two kinds of additional information are required in order to extend a standard trade model to include Melitz-type monopolistic competition and heterogeneous firms. Further, it is shown how specifying too much additional information leads to violations of the model constraints, necessitating adjustment and reconciliation of the data. Once a Melitz-type model is parameterized, a Krugman-type model can also be parameterized using the calibrated values in the Melitz-type model without any additional data. Sample code for the General Algebraic Modeling System (GAMS) has also been prepared to promote the innovative supermodel in the AGE community.
Resumo:
In recent years, challenged by the climate scenarios put forward by the IPCC and its potential impact on plant distribution, numerous predictive techniques -including the so called habitat suitability models (HSM)- have been developed. Yet, as the output of the different methods produces different distribution areas, developing validation tools are strong needs to reduce uncertainties. Focused in the Iberian Peninsula, we propose a palaeo-based method to increase the robustness of the HSM, by developing an ecological approach to understand the mismatches between the palaeoecological information and the projections of the HSMs. Here, we present the result of (1) investigating causal relationships between environmental variables and presence of Pinus sylvestris L. and P. nigra Arn. available from the 3rd Spanish Forest Inventory, (2) developing present and past presence-predictions through the MaxEnt model for 6 and 21 kyr BP, and (3) assessing these models through comparisons with biomized palaeoecological data available from the European Pollen Database for the Iberian Peninsula.