848 resultados para t quark


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results are presented from a search for the pair production of third-generation scalar and vector leptoquarks, as well as for top squarks in R-parity-violating supersymmetric models. In either scenario, the new, heavy particle decays into a τ lepton and a b quark. The search is based on a data sample of pp collisions at √s=7 TeV, which is collected by the CMS detector at the LHC and corresponds to an integrated luminosity of 4.8 fb -1. The number of observed events is found to be in agreement with the standard model prediction, and exclusion limits on mass parameters are obtained at the 95% confidence level. Vector leptoquarks with masses below 760 GeV are excluded and, if the branching fraction of the scalar leptoquark decay to a τ lepton and a b quark is assumed to be unity, third-generation scalar leptoquarks with masses below 525 GeV are ruled out. Top squarks with masses below 453 GeV are excluded for a typical benchmark scenario, and limits on the coupling between the top squark, τ lepton, and b quark, λ333′ are obtained. These results are the most stringent for these scenarios to date. © 2013 CERN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We derive the node structure of the radial functions which are solutions of the Dirac equation with scalar S and vector V confining central potentials, in the conditions of exact spin or pseudospin symmetry, i.e., when one has V=±S+C, where C is a constant. We show that the node structure for exact spin symmetry is the same as the one for central potentials which go to zero at infinity but for exact pseudospin symmetry the structure is reversed. We obtain the important result that it is possible to have positive energy bound solutions in exact pseudospin symmetry conditions for confining potentials of any shape, including naturally those used in hadron physics, from nuclear to quark models. Since this does not occur for potentials going to zero at large distances, which are used in nuclear relativistic mean-field potentials or in the atomic nucleus, this shows the decisive importance of the asymptotic behavior of the scalar and vector central potentials on the onset of pseudospin symmetry and on the node structure of the radial functions. Finally, we show that these results are still valid for negative energy bound solutions for antifermions. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The top-quark pair production cross section in 7 TeV center-of-mass energy proton-proton collisions is measured using data collected by the CMS detector at the LHC. The measurement uses events with one jet identified as a hadronically decaying τ lepton and at least four additional energetic jets, at least one of which is identified as coming from a b quark. The analyzed data sample corresponds to an integrated luminosity of 3.9 fb-1 recorded by a dedicated multijet plus hadronically decaying τ trigger. A neural network has been developed to separate the top-quark pairs from the W+jets and multijet backgrounds. The measured value of σtt̄= 152 ± 12,(stat.) ± 32,(syst.) ±,(lum.) pb is consistent with the standard model predictions. © 2013 CERN for the benefit of the CMS collaboration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A search for resonances decaying to top quark-antiquark pairs is performed using a dilepton+jets data sample recorded by the CMS experiment at the LHC in pp collisions at √s=7 TeV corresponding to an integrated luminosity of 5.0 fb-1. No significant deviations from the standard model background are observed. Upper limits are presented for the production cross section times branching fraction of top quark-antiquark resonances for masses from 750 to 3000 GeV. In particular, the existence of a leptophobic topcolor particle Z′ is excluded at the 95% confidence level for resonance masses MZ ′<1.3 TeV for ΓZ′=0.012MZ ′, and M<1.9 TeV for ΓZ′=0.10MZ ′. © 2013 CERN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A search for new physics is performed using events with isolated same-sign leptons and at least two bottom-quark jets in the final state. Results are based on a sample of proton-proton collisions collected at a center-of-mass energy of 8 TeV with the CMS detector and corresponding to an integrated luminosity of 10.5 fb-1. No excess above the standard model background is observed. Upper limits are set on the number of events from non-standard-model sources and are used to constrain a number of new physics models. Information on acceptance and efficiencies is also provided so that the results can be used to confront an even broader class of new physics models. © 2013 CERN for the benefit of the CMS collaboration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is quite difficult to obtain non-trivial chiral symmetry breaking solutions for the quark gap equation in the presence of dynamically generated gluon masses. An effective confining propagator has recently been proposed by Cornwall in order to solve this problem. We study phenomenological consequences of this approach, showing its compatibility with the experimental data. We argue that this confining propagator should be restricted to a small region of momenta, leading to effective four-fermion interactions at low energy. © 2013 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on recent estimates of the J/Ψ mass shift in infinite nuclear matter and finite nuclei arising from in-medium D and D* meson loops. The density dependence of the J/Ψ mass shift is evaluated employing medium-modified D and D* meson masses derived within the quark-meson coupling model. Using a local density approximation, J/Ψ-nuclear bound state energies are calculated for a range of nuclei. We predict that J/Ψ-nuclear bound states should be observed with a clear signal in experiments, provided the J/Ψ meson is produced in recoilless kinematics. © Published under licence by IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four-fermion operators have been used in the past to link the quark-exchange processes in the interaction of hadrons with the effective meson-exchange amplitudes. In this paper, we apply the similar idea of a Fierz rearrangement to the self-energy and electromagnetic processes and focus on the electromagnetic form factors of the nucleon and the electron. We explain the motivation of using four-fermion operators and discuss the advantage of this method in computing electromagnetic processes. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We verify that SU(N)TC⊗ - SU(3) L⊗ - U(1)X models, where the gauge symmetry breaking is totally dynamical and promoted by the non-Abelian technicolor group and the strong Abelian interactions, are quite constrained by the LHC data. The theory contains a T quark self-energy involving the mixing between the neutral gauge bosons, which introduces the coupling between the light and heavy composite scalar bosons of the model. We determine the lightest scalar boson mass for these models from an effective action for composite operators, assuming details about the dynamics of the strong interaction theories. Comparing the value of this mass with the ATLAS and CMS observation of a new boson with a mass M∼125 GeV and considering the lower bound determined by the LHC Collaboration on the heavy neutral gauge boson (Z′) present in these models, we can establish constraints on the possible models. For example, if SU(N)TC≡SU(2)TC, with technifermions in the fundamental representation, the model barely survives the confrontation with the LHC data. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of the structure of excited baryons are key factors to the N* program at Jefferson Lab (JLab). Within the first year of data taking with the Hall B CLAS12 detector following the 12 GeV upgrade, a dedicated experiment will aim to extract the N* electrocouplings at high photon virtualities Q 2. This experiment will allow exploration of the structure of N* resonances at the highest photon virtualities ever achieved, with a kinematic reach up to Q2 = 12 GeV2. This high-Q 2 reach will make it possible to probe the excited nucleon structures at distance scales ranging from where effective degrees of freedom, such as constituent quarks, are dominant through the transition to where nearly massless bare-quark degrees of freedom are relevant. In this document, we present a detailed description of the physics that can be addressed through N* structure studies in exclusive meson electroproduction. The discussion includes recent advances in reaction theory for extracting N* electrocouplings from meson electroproduction off protons, along with Quantum Chromodynamics (QCD)-based approaches to the theoretical interpretation of these fundamental quantities. This program will afford access to the dynamics of the nonperturbative strong interaction responsible for resonance formation, and will be crucial in understanding the nature of confinement and dynamical chiral symmetry breaking in baryons, and how excited nucleons emerge from QCD. © 2013 World Scientific Publishing Company.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results are presented of a search for the production of new particles decaying to pairs of partons (quarks, antiquarks, or gluons), in the dijet mass spectrum in proton-proton collisions at √s=8 TeV. The data sample corresponds to an integrated luminosity of 4.0 fb-1, collected with the CMS detector at the LHC in 2012. No significant evidence for narrow resonance production is observed. Upper limits are set at the 95% confidence level on the production cross section of hypothetical new particles decaying to quark-quark, quark-gluon, or gluon-gluon final states. These limits are then translated into lower limits on the masses of new resonances in specific scenarios of physics beyond the standard model. The limits reach up to 4.8 TeV, depending on the model, and extend previous exclusions from similar searches performed at lower collision energies. For the first time mass limits are set for the Randall-Sundrum graviton model in the dijet channel. © 2013 CERN. Published by the American Physical Society under the terms of the http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recently proposed scenario for baryogenesis, called post-sphaleron baryogenesis (PSB), is discussed within a class of quark-lepton unified framework based on the gauge symmetry SU(2)L×SU(2) R×SU(4)c realized in the multi-TeV scale. The baryon asymmetry of the Universe in this model is produced below the electroweak phase transition temperature after the sphalerons have decoupled from the Hubble expansion. These models embed naturally the seesaw mechanism for neutrino masses and predict color-sextet scalar particles in the TeV range which may be accessible to the LHC experiments. A necessary consequence of this scenario is the baryon-number-violating ΔB=2 process of neutron-antineutron (n-n̄) oscillations. In this paper we show that the constraints of PSB, when combined with the neutrino oscillation data and restrictions from flavor changing neutral currents mediated by the colored scalars, imply an upper limit on the n-n̄ oscillation time of 5×1010 sec regardless of the quark-lepton unification scale. If this scale is relatively low, in the (200-250) TeV range, τn-n̄ is predicted to be less than 1010 sec, which is accessible to the next generation of proposed experiments. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, Lippmann-Schwinger equation is solved by using Martin and Cornel potentials to calculate bc̄ energy levels. The results for some energy levels which are not observable, such as those of tt̄ in its short half-life are also predicted. Our calculated energy levels are in good agreement with results of other groups. The stability interval for Yukawa-Linear potential is also studied by investigating the spectrum of eigenvalues. © 2013 Springer Science+Business Media New York.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simultaneous measurement of the top-quark, W-boson, and neutrino masses is reported for tt̄ events selected in the dilepton final state from a data sample corresponding to an integrated luminosity of 5.0 fb-1 collected by the CMS experiment in pp collisions at √s = 7 TeV. The analysis is based on endpoint determinations in kinematic distributions. When the neutrino and W-boson masses are constrained to their world-average values, a top-quark mass value of Mt = 173.9 ± 0.9 (stat)+1.7 -2.1(syst.) GeV is obtained. When such constraints are not used, the three particle masses are obtained in a simultaneous fit. In this unconstrained mode the study serves as a test of mass determination methods that may be used in beyond standard model physics scenarios where several masses in a decay chain may be unknown and undetected particles lead to underconstrained kinematics. © 2013 CERN for the benefit of the CMS collaboration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the possibilities of New Physics affecting the Standard Model (SM) Higgs sector. An effective Lagrangian with dimension-six operators is used to capture the effect of New Physics. We carry out a global Bayesian inference analysis, considering the recent LHC data set including all available correlations, as well as results from Tevatron. Trilinear gauge boson couplings and electroweak precision observables are also taken into account. The case of weak bosons tensorial couplings is closely examined and NLO QCD corrections are taken into account in the deviations we predict. We consider two scenarios, one where the coefficients of all the dimension-six operators are essentially unconstrained, and one where a certain subset is loop suppressed. In both scenarios, we find that large deviations from some of the SM Higgs couplings can still be present, assuming New Physics arising at 3 TeV. In particular, we find that a significantly reduced coupling of the Higgs to the top quark is possible and slightly favored by searches on Higgs production in association with top quark pairs. The total width of the Higgs boson is only weakly constrained and can vary between 0.7 and 2.7 times the Standard Model value within 95% Bayesian credible interval (BCI). We also observe sizeable effects induced by New Physics contributions to tensorial couplings. In particular, the Higgs boson decay width into Zγ can be enhanced by up to a factor 12 within 95% BCI. © 2013 SISSA.