986 resultados para stochastic programming
Resumo:
Activation of CD4+ T cells results in rapid proliferation and differentiation into effector and regulatory subsets. CD4+ effector T cell (Teff) (Th1 and Th17) and Treg subsets are metabolically distinct, yet the specific metabolic differences that modify T cell populations are uncertain. Here, we evaluated CD4+ T cell populations in murine models and determined that inflammatory Teffs maintain high expression of glycolytic genes and rely on high glycolytic rates, while Tregs are oxidative and require mitochondrial electron transport to proliferate, differentiate, and survive. Metabolic profiling revealed that pyruvate dehydrogenase (PDH) is a key bifurcation point between T cell glycolytic and oxidative metabolism. PDH function is inhibited by PDH kinases (PDHKs). PDHK1 was expressed in Th17 cells, but not Th1 cells, and at low levels in Tregs, and inhibition or knockdown of PDHK1 selectively suppressed Th17 cells and increased Tregs. This alteration in the CD4+ T cell populations was mediated in part through ROS, as N-acetyl cysteine (NAC) treatment restored Th17 cell generation. Moreover, inhibition of PDHK1 modulated immunity and protected animals against experimental autoimmune encephalomyelitis, decreasing Th17 cells and increasing Tregs. Together, these data show that CD4+ subsets utilize and require distinct metabolic programs that can be targeted to control specific T cell populations in autoimmune and inflammatory diseases.
Resumo:
An abstract of this work will be presented at the Compiler, Architecture and Tools Conference (CATC), Intel Development Center, Haifa, Israel November 23, 2015.
Resumo:
Of key importance to oil and gas companies is the size distribution of fields in the areas that they are drilling. Recent arguments suggest that there are many more fields yet to be discovered in mature provinces than had previously been thought because the underlying distribution is monotonic not peaked. According to this view the peaked nature of the distribution for discovered fields reflects not the underlying distribution but the effect of economic truncation. This paper contributes to the discussion by analysing up-to-date exploration and discovery data for two mature provinces using the discovery-process model, based on sampling without replacement and implicitly including economic truncation effects. The maximum likelihood estimation involved generates a high-dimensional mixed-integer nonlinear optimization problem. A highly efficient solution strategy is tested, exploiting the separable structure and handling the integer constraints by treating the problem as a masked allocation problem in dynamic programming.
Resumo:
The space–time dynamics of rigid inhomogeneities (inclusions) free to move in a randomly fluctuating fluid bio-membrane is derived and numerically simulated as a function of the membrane shape changes. Both vertically placed (embedded) inclusions and horizontally placed (surface) inclusions are considered. The energetics of the membrane, as a two-dimensional (2D) meso-scale continuum sheet, is described by the Canham–Helfrich Hamiltonian, with the membrane height function treated as a stochastic process. The diffusion parameter of this process acts as the link coupling the membrane shape fluctuations to the kinematics of the inclusions. The latter is described via Ito stochastic differential equation. In addition to stochastic forces, the inclusions also experience membrane-induced deterministic forces. Our aim is to simulate the diffusion-driven aggregation of inclusions and show how the external inclusions arrive at the sites of the embedded inclusions. The model has potential use in such emerging fields as designing a targeted drug delivery system.
Resumo:
Three paradigms for distributed-memory parallel computation that free the application programmer from the details of message passing are compared for an archetypal structured scientific computation -- a nonlinear, structured-grid partial differential equation boundary value problem -- using the same algorithm on the same hardware. All of the paradigms -- parallel languages represented by the Portland Group's HPF, (semi-)automated serial-to-parallel source-to-source translation represented by CAP-Tools from the University of Greenwich, and parallel libraries represented by Argonne's PETSc -- are found to be easy to use for this problem class, and all are reasonably effective in exploiting concurrency after a short learning curve. The level of involvement required by the application programmer under any paradigm includes specification of the data partitioning, corresponding to a geometrically simple decomposition of the domain of the PDE. Programming in SPMD style for the PETSc library requires writing only the routines that discretize the PDE and its Jacobian, managing subdomain-to-processor mappings (affine global-to-local index mappings), and interfacing to library solver routines. Programming for HPF requires a complete sequential implementation of the same algorithm as a starting point, introduction of concurrency through subdomain blocking (a task similar to the index mapping), and modest experimentation with rewriting loops to elucidate to the compiler the latent concurrency. Programming with CAPTools involves feeding the same sequential implementation to the CAPTools interactive parallelization system, and guiding the source-to-source code transformation by responding to various queries about quantities knowable only at runtime. Results representative of "the state of the practice" for a scaled sequence of structured grid problems are given on three of the most important contemporary high-performance platforms: the IBM SP, the SGI Origin 2000, and the CRAYY T3E.
Resumo:
The paper describes an implicit finite difference approach to the pricing of American options on assets with a stochastic volatility. A multigrid procedure is described for the fast iterative solution of the discrete linear complementarity problems that result. The accuracy and performance of this approach is improved considerably by a strike-price related analytic transformation of asset prices and adaptive time-stepping.
Resumo:
The key problems in discussing stochastic monotonicity and duality for continuous time Markov chains are to give the criteria for existence and uniqueness and to construct the associated monotone processes in terms of their infinitesimal q -matrices. In their recent paper, Chen and Zhang [6] discussed these problems under the condition that the given q-matrix Q is conservative. The aim of this paper is to generalize their results to a more general case, i.e., the given q-matrix Q is not necessarily conservative. New problems arise 'in removing the conservative assumption. The existence and uniqueness criteria for this general case are given in this paper. Another important problem, the construction of all stochastically monotone Q-processes, is also considered.
Resumo:
In this paper we discuss the relationship and characterization of stochastic comparability, duality, and Feller–Reuter–Riley transition functions which are closely linked with each other for continuous time Markov chains. A necessary and sufficient condition for two Feller minimal transition functions to be stochastically comparable is given in terms of their density q-matrices only. Moreover, a necessary and sufficient condition under which a transition function is a dual for some stochastically monotone q-function is given in terms of, again, its density q-matrix. Finally, for a class of q-matrices, the necessary and sufficient condition for a transition function to be a Feller–Reuter–Riley transition function is also given.
Resumo:
Sufficient conditions for the exponential stability of a class ofnonlinear, non-autonomous stochastic differential equations in infinitedimensions are studied. The analysis consists of introducing a suitableapproximating solution systems and using a limiting argument to pass onstability of strong solutions to mild ones. As a consequence, the classicalcriteriaof stability in A. Ichikawa [8] are improved and extended to cover a class ofnon-autonomous stochastic evolution equations.Two examples are investigated to illustrate our theory.
Resumo:
The objective of this paper is to investigate the p-ίh moment asymptotic stability decay rates for certain finite-dimensional Itό stochastic differential equations. Motivated by some practical examples, the point of our analysis is a special consideration of general decay speeds, which contain as a special case the usual exponential or polynomial type one, to meet various situations. Sufficient conditions for stochastic differential equations (with variable delays or not) are obtained to ensure their asymptotic properties. Several examples are studied to illustrate our theory.