940 resultados para spine flexibility
Resumo:
Introduction The objective of the present study was to assess the craniocervical posture and the positioning of the hyoid bone in children with asthma who are mouth breathers compared to non-asthma controls. Methods The study was conducted on 56 children, 28 of them with mild (n = 15) and moderate (n = 13) asthma (14 girls aged 10 79 +/- 1 31 years and 14 boys aged 9 79 +/- 1.12 years), matched for sex, height, weight and age with 28 non-asthma children who are not mouth breathers The sample size was calculated considering a confidence interval of 95% and a prevalence of 4% of asthma in Latin America. Eighteen variables were analyzed in two radiographs (latero-lateral teleradiography and lateral cervical spine radiography), both obtained with the head in a natural position The independent t-test was used to compare means values and the chi-square test to compare percentage values (p < 0 05) Intraclass correlation coefficient (ICC) was used to verify reliability. Results. The Craniovertebral Angle (CVA) was found to be significantly smaller in asthma than in control children (106.38 +/- 766 vs. 111 21 +/- 7.40. p = 0 02) and the frequency of asthma children with an absent or inverted hyoid triangle was found to be significantly higher compared to non-asthma children (36% vs 7%, p = 0.0001). The values of the inclination angles of the superior cervical spine in relation to the horizontal plane were significantly higher in moderate than in mild asthma children (CVT/Hor 85 10 +/- 725 vs. 90 92 +/- 6.69, p = 0 04 and C1/Hor. 80 93 +/- 5.56 vs 85 00 +/- 4 20, p = 0 04) Conclusions These findings revealed that asthma children presented higher head extension and a higher frequency of changes in hyoid bone position compared to non-asthma children and that greater the asthma severity greater the extension of the upper cervical spine. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Study Design. Osteoblastic cells derived from vertebral lamina and iliac crest were isolated and cultured under the same conditions (osteogenic medium, pH, temperature, and CO(2) levels). Objective. To compare proliferation and expression of osteoblastic phenotype of cells derived from vertebral lamina and iliac grafting. Summary of Background Data. Many factors play a role in the success of bone graft in spinal fusion including osteoblastic cell population. Two common sources of graft are vertebral lamina and iliac crest, however, differences in proliferation and osteoblastic phenotype expression between cells from these sites have not been investigated. Methods. Cells obtained from cancellous bone of both vertebral lamina and iliac crest were cultured and proliferation was evaluated by direct cell counting and viability detected by Trypan blue. Alkaline phosphatase (ALP) activity was evaluated by thymolphthalein release from thymolphthalein monophosphate and matrix mineralization by staining with alizarin red S. Gene expression of ALP, osteocalcin, runt-related transcription factor 2, Msh homeobox 2, bone morphogenetic protein 7, intercellular adhesion molecule 1 precursor, osteoprotegerin, and receptor activator of NF-kB ligand was analyzed by real-time PCR. All comparisons were donor-matched. Results. Proliferation was greater at days 7 and 10 in cells from vertebral lamina compared with ones from iliac crest without difference in cell viability. ALP activity was higher in cells from vertebral lamina compared with cells from iliac crest at days 7 and 10. At 21 days, mineralized matrix was higher in cells derived from vertebral lamina than from iliac crest. At day 7, gene expression of ALP, osteocalcin, runt-related transcription factor 2, Msh homeobox 2, bone morphogenetic protein 7, intercellular adhesion molecule 1 precursor, receptor activator of NF-kB ligand, and osteoprotegerin was higher in cells derived from vertebral lamina compared with iliac crest. Conclusion. Cell proliferation and osteoblastic phenotype development in cells derived from cancellous bone were more exuberant in cultures of vertebral lamina than of iliac crest.
Resumo:
The objective of the present study was to assess the influence of decortication of the posterior elements of the vertebra (recipient bed) and the nature of the bone graft (cortical or cancellous bone) on graft integration and bone, cartilage and fiber neoformation in the interface between the vertebral recipient bed and the bone graft. Seventy-two male Wistar rats were divided into four experimental groups according to the presence or absence of decortication of the posterior vertebral elements and the use of a cortical or cancellous bone graft. Group I-the posterior elements were decorticated and cancellous bone used. Group II-the posterior elements were decorticated and cortical graft was used. Group III-the posterior elements were not decorticated and cancellous graft was used. Group IV-the posterior elements were not decorticated and cortical graft was used. The animals were killed 3, 6 and 9 weeks after surgery and the interface between the posterior elements and the bone graft was subjected to histomorphometric evaluation. Mean percent neoformed bone was 40.8% in group I (decortication and cancellous graft), 39.13% in group II (decortication and cortical graft), 6.13% in group III (non-decorticated and cancellous graft), and 9.27% in group IV (non-decorticated and cortical graft) for animals killed at 3 weeks (P = 0.0005). For animals killed at 6 weeks, the mean percent was 38.53% for group I, 40.40% for group II, 10.27% for group III, and 7.6% for group IV (P = 0.0005), and for animals killed at 9 weeks, the mean was 25.93% for group I, 30.6% for group II, 16.4% for group III, and 18.73% for group IV (P = 0.0026). The mean percent neoformed cartilage tissue was 8.36% for group I, 7.46% for group II, 11.1% for group III, and 9.13% for group IV for the animals killed at 3 weeks (P = 0.6544); 6.6% for group I, 8.07% for group, 7.47% for group III and 6.13% for group IV (P = 0.4889) for animals killed at 6 weeks, and 3.13% for group I, 4.06% for group II, 10.53% for group III and 12.07% for group IV (P = 0.0006) for animals killed at 9 weeks. Mean percent neoformed fibrous tissue was 11% for group I, 6.13% for group II, 26.27% for group III and 21.87% for group IV for animals killed at 3 weeks (P = 0.0008); 7.67% for group I, 7.1% for group II, 9.8% for group III and 10.4% for group IV (P = 0.7880) for animals killed at 6 weeks, and 3.73% for group I, 4.4% for group II, 6.67% for group III and 6.8% for group IV (P = 0.0214) for animals killed at 9 weeks. The statistically significant differences in percent tissue formation were related to decortication of the posterior elements. The use of a cortical or cancellous graft did not influence tissue neoformation. Ossification in the interface of the recipient graft bed was of the intramembranous type in the decorticated animals and endochondral type in the non-decorticated animals.
Resumo:
Background: Spinal signs found in association with atypical chest and abdominal pain may suggest the pain is referred from the thoracic spine. However, the prevalence of such signs in these conditions has rarely been compared with that in those without pain. In this study, the prevalence of spinal signs and dysfunction in patients with back, chest and abdominal pain is compared with that in pain free controls. The aim of the study is to determine the significance of spinal findings in patients with such pain. Methods: A general practitioner blinded to the patients' histories performed a cervical and thoracic spinal examination on general practice patients with back, chest and/or abdominal pain and on controls without pain. Thoracic intervertebral dysfunction was diagnosed on the basis of movement and palpation findings. Results: Seventy three study patients plus 24 controls, were examined. For cervical spinal signs, pain in the back, chest and/or abdomen was associated with pain with active movements and overpressure at end range and with loss of movement range. For thoracic spinal signs, this association held for pain with active movements and overpressure, but not with loss of movement range. The prevalence of thoracic intervertebral dysfunction was 25.0% in controls, 65.5% with chest/abdominal pain, 72.0% with back pain and 79.0% with back pain with chest/abdominal pain. This prevalence was higher with chest pain than with abdominal pain. Conclusions: The results show an association, but not a causal link between thoracic intervertebral dysfunction and atypical chest/abdominal pain. A spinal examination should be performed routinely assessing these conditions. The minimum examination for the detection of intervertebral dysfunction is testing for pain with spinal movements and palpation for tenderness. The interpretation of positive signs requires knowledge of their prevalence in pain free controls and in patients with visceral disease
Resumo:
Palpation for tenderness forms an important part of the manual therapy assessment for musculoskeletal dysfunction, In conjunction with other testing procedures it assists in establishing the clinical diagnosis. Tenderness in the thoracic spine has been reported in the literature as a clinical feature in musculoskeletal conditions where pain and dysfunction are located primarily in the upper quadrant. This study aimed to establish whether pressure pain thresholds (PPTs) of the mid-thoracic region of asymptomatic subjects were naturally lower than those of the cervical and lumbar areas. A within-subject study design was used to examine PPT at four spinal levels C6, T4, T6, and L4 in 50 asymptomatic volunteers. Results showed significant (P < 0.001) regional differences. PPT values increased in a caudal direction. The cervical region had the lowest PPT scores, that is was the most tender. Values increased in the thoracic region and were highest in the lumbar region. This study contributes to the normative data on spinal PPT values and demonstrates that mid-thoracic tenderness relative to the cervical spine is not a normal finding in asymptomatic subjects. (C) 2001 Harcourt Publishers Ltd.
Resumo:
Recent findings that spinal manual therapy (SMT) produces concurrent hypoalgesic and sympathoexcitatory effects have led to the proposal that SMT may exert its initial effects by activating descending inhibitory pathways from the dorsal periaqueductal gray area of the midbrain (dPAG). In addition to hypoalgesic and sympathoexcitatory effects, stimulation of the dPAG in animals has been shown to hal e a facilitatory effect on motor activity. This study sought to further investigate the proposal regarding SMT and the FAG by including a test of motor function in addition to the variables previously investigated, Using a condition randomised, placebo-controlled, double blind, repeated measures design, 30 subjects with mid to lon er cervical spine pain of insidious onset participated in the study. The results indicated that the cervical mobilisation technique produced a hypoalgesic effect as revealed by increased pressure pain thresholds on the side of treatment (P = 0.0001) and decreased resting visual analogue scale scores (P = 0.049). The treatment technique also produced a sympathoexcitatory effect with an increase in skin conductance (P < 0.002) and a decrease in skin temperature (P = < 0.02). There was a decrease in superficial neck flexor muscle activity (P < 0.0002) at the lower levels of a staged cranio-cervical flexion test. This could imply facilitation of the deep neck flexor muscles with a decreased need for co-activation of the superficial neck flexors, The combination of all findings,would support the proposal that SMT may, at least initially, exert part of its influence via activation of the PAG, (C) 2000 Harcourt Publishers Ltd.
Resumo:
This study examines whether dissimilarity among employees that is based on their work status (i.e., whether they are temporary or internal workers) influences their organization-based self-esteem, their trust in and attraction toward their peers, and their altruism. A model that is based on social identity theory posits that work-status dissimilarity negatively influences each outcome variable and that the strength of this relationship varies depending on whether employees have temporary or internal status and the composition of their work groups. Results that are based on a survey of 326 employees (189 internal and 137 temporary) from 34 work groups, belonging to 2 organizations, indicate that work-status dissimilarity has a systematic negative effect only on outcomes related to internal workers when they work in temporary-worker-dominated groups.
Resumo:
In the last two decades, increasing numbers of workplaces in Australia have introduced 12-hour shifts. This increase is due, in part, to government policies aimed at promoting labour flexibility. The purpose of this paper is to examine the cover afforded by the Workplace Relations Act 1996 and other industrial relations legislation in terms of shift-workers’ health and safety. Particular reference is made to the broader social, economic and political context surrounding the introduction and use of 12-hour shifts, as it is this context that shapes the constraints and opportunities facing employers and employees in the work arrangements they choose and how they are negotiated. We conclude that the current system of regulating industrial relations in Australia is largely outcome-focused and inadequate. The bargaining process receives little regulation in terms of considering how changes could affect health and safety in the workplace or how changes might affect individual workers. As a result, the increased introduction of unsafe shiftworking arrangements is a worrying, and likely, prospect.
Resumo:
Here we present evidence that the pyramidal cell phenotype varies markedly in the cortex of different anthropoid species. Regional and species differences in the size of, number of bifurcations in, and spine density of the basal dendritic arbors cannot be explained by brain size. Instead, pyramidal cell morphology appears to accord with the specialized cortical function these cells perform. Cells in the prefrontal cortex of humans are more branched and more spinous than those in the temporal and occipital lobes. Moreover, cells in the prefrontal cortex of humans are more branched and more spinous than those in the prefrontal cortex of macaque and marmoset monkeys. These results suggest that highly spinous, compartmentalized, pyramidal cells (and the circuits they form) are required to perform complex cortical functions such as comprehension, perception, and planning.
Resumo:
Pyramidal neurones were injected with Lucifer Yellow in slices cut tangential to the surface of area 7m and the superior temporal polysensory area (STP) of the macaque monkey. Comparison of the basal dendritic arbors of supra- and infragranular pyramidal neurones (n=139) that were injected in the same putative modules in the different cortical areas revealed variation in their structure. Moreover, there were relative differences in dendritic morphology of supra- and infragranular pyramidal neurones in the two cortical areas. Shell analyses revealed that layer III pyramidal neurones in area STP had considerably higher peak complexity (maximum number of dendritic intersections per Shell circle) than those in layer V, whereas peak complexities were similar for supra- and infragranular pyramidal neurones in area 7m. In both cortical areas, the basal dendritic trees of layer m pyramidal neurones were characterized by a higher spine density than those in layer V. Calculations of the total number of dendritic spines in the average basal dendritic arbor revealed that layer V pyramidal neurones in area 7m had twice as many spines as cells in layer III. (4535 and 2294, respectively). A similar calculation for neurones in area STP revealed that layer III pyramidal neurones had approximately the same number of spines as cells in layer V (3585 and 3850 spines, respectively). Relative differences in the branching patterns of, and the number of spines in, the basal dendritic arbors of supra- and infragranular pyramidal neurones in the different cortical areas may allow for integration of different numbers of inputs, and different degrees of dendritic processing. These results support the thesis that intra-areal circuitry differs in different cortical areas.
Resumo:
The control of movement is predicated upon a system of constraints of musculoskeletal and neural origin. The focus of the present study was upon the manner in which such constraints are adapted or superseded during the acquisition of motor skill. Individuals participated in five experimental sessions, ill which they attempted to produce abduction-adduction movements of the index finger in time with an auditory metronome. During each trial, the metronome frequency was increased in eight steps from an individually determined base frequency. Electromyographic (EMC) activity was recorded from first dorsal interosseous (FDI), first volar interosseous (FVI), flexor digitorum superficialis (FDS), and extensor digitorum communis (EDC) muscles. The movements produced on the final day of acquisition more accurately matched the required profile, and exhibited greater spatial and temporal stability, than those generated during initial performance. Tn the early stages of skill acquisition, an alternating pattern of activation in FDI and FVI was maintained, even at the highest frequencies. Tn contrast, as the frequency of movement was increased, activity in FDS and EDC was either tonic or intermittent. As learning proceeded, alterations in recruitment patterns were expressed primarily in the extrinsic muscles (EDC and FDS). These changes took the form of increases in the postural role of these muscles, shifts to phasic patterns of activation, or selective disengagement of these muscles. These findings suggest that there is considerable flexibility in the composition of muscle synergies, which is exploited by individuals during the acquisition of coordination.
Three-dimensional structure of RTD-1, a cyclic antimicrobial defensin from rhesus macaque leukocytes
Resumo:
Most mammalian defensins are cationic peptides of 29-42 amino acids long, stabilized by three disulfide bonds. However, recently Tang et al. (1999, Science 286, 498-502) reported the isolation of a new defensin type found in the leukocytes of rhesus macaques. In contrast to all the other defensins found so far, rhesus theta defensin-1 (RTD-1) is composed of just 18 amino acids with the backbone cyclized through peptide bonds. Antibacterial activities of both the native cyclic peptide and a linear form were examined, showing that the cyclic form was 3-fold more active than the open chain analogue [Tang et al. (1999) Science 286, 498-502]. To elucidate the three-dimensional structure of RTD-1 and its open chain analogue, both peptides were synthesized using solid-phase peptide synthesis and tert-butyloxycarbonyl chemistry. The structures of both peptides in aqueous solution were determined from two-dimensional H-1 NMR data recorded at 500 and 750 MHz. Structural constraints consisting of interproton distances and dihedral angles were used as input for simulated-annealing calculations and water refinement with the program CNS. RTD-1 and its open chain analogue oRTD-1 adopt very similar structures in water. Both comprise an extended beta -hairpin structure with turns at one or both ends. The turns are well defined within themselves and seem to be flexible with respect to the extended regions of the molecules. Although the two strands of the beta -sheet are connected by three disulfide bonds, this region displays a degree of flexibility. The structural similarity of RTD-1 and its open chain analogue oRTD-1, as well as their comparable degree of flexibility, support the theory that the additional charges at the termini of the open chain analogue rather than overall differences in structure or flexibility are the cause for oRTD-1's lower antimicrobial activity. In contrast to numerous other antimicrobial peptides, RTD-1 does not display any amphiphilic character, even though surface models of RTD-1 exhibit a certain clustering of positive charges. Some amide protons of RTD-1 that should be solvent-exposed in monomeric beta -sheet structures show low-temperature coefficients, suggesting the possible presence of weak intermolecular hydrogen bonds.
Resumo:
For the improvement of genetic material suitable for on farm use under low-input conditions, participatory and formal plant breeding strategies are frequently presented as competing options. A common frame of reference to phrase mechanisms and purposes related to breeding strategies will facilitate clearer descriptions of similarities and differences between participatory plant breeding and formal plant breeding. In this paper an attempt is made to develop such a common framework by means of a statistically inspired language that acknowledges the importance of both on farm trials and research centre trials as sources of information for on farm genetic improvement. Key concepts are the genetic correlation between environments, and the heterogeneity of phenotypic and genetic variance over environments. Classic selection response theory is taken as the starting point for the comparison of selection trials (on farm and research centre) with respect to the expected genetic improvement in a target environment (low-input farms). The variance-covariance parameters that form the input for selection response comparisons traditionally come from a mixed model fit to multi-environment trial data. In this paper we propose a recently developed class of mixed models, namely multiplicative mixed models, also called factor-analytic models, for modelling genetic variances and covariances (correlations). Mixed multiplicative models allow genetic variances and covariances to be dependent on quantitative descriptors of the environment, and confer a high flexibility in the choice of variance-covariance structure, without requiring the estimation of a prohibitively high number of parameters. As a result detailed considerations regarding selection response comparisons are facilitated. ne statistical machinery involved is illustrated on an example data set consisting of barley trials from the International Center for Agricultural Research in the Dry Areas (ICARDA). Analysis of the example data showed that participatory plant breeding and formal plant breeding are better interpreted as providing complementary rather than competing information.
Resumo:
Objective: We examined the relationship between self-reported calcium (Cal intake and bone mineral content (BMC) in children and adolescents. We hypothesized that an expression of Ca adjusted for energy intake (El), i.e., Ca density, would be a better predictor of BMC than unadjusted Ca because of underreporting of EI. Methods: Data were obtained on dietary intakes (repeated 24-hour recalls) and BMC (by DEXA) in a cross-section of 227 children aged 8 to 17 years. Bivariate and multivariate analyses were used to examine die relationship between Ca, Ca density, and the dependent variables total body BMC and lumbar spine BMC. Covariates included were height, weight, bone area, maturity age, activity score and El. Results: Reported El compared to estimated basal metabolic rate suggested underreporting of El. Total body and lumbar spine BMC were significantly associated with El, but not Ca or Ca density, in bivariate analyses. After controlling for size and maturity, multiple linear regression analysis revealed unadjusted Ca to be a predictor of BMC in males in the total body (p = 0.08) and lumbar spine (p = 0.01). Unadjusted Ca was not a predictor of BMC at either site in females. Ca density was not a better predictor of BMC at either site in males or females. Conclusions: The relationship observed in male adolescents in this study between Ca intake and BMC is similar to that seen in clinical trials. Ca density did not enable us to see a relationship between Ca intake and BMC in females, which may reflect systematic reporting errors or that diet is not a limiting factor in this group of healthy adolescents.