943 resultados para spatio-temporal models
Resumo:
Entre la fin du Néolithique et l’âge du Bronze, la présence d’habitats groupés de type village est un phénomène diffus, tant en Italie qu’en France méridionale. Néanmoins, la prise en compte de la variabilité des formes de la stratification des sites interroge. En quoi l’enregistrement sédimentaire des sols d’habitat permet-il d’appréhender la question de l’organisation villageoise et de sa variabilité entre la fin du Néolithique et l’âge du Bronze ? Quelle image cet enregistrement sédimentaire donne-t-il de l’organisation sociale et économique du village ? Afin d’aborder ces questions, nous avons choisi de mener une étude géoarchéologique sur des sites de formes différentes, issus de contextes chrono-culturels et environnementaux variés. La démarche, fondée sur l’emploi de la micromorphologie des sols en tant qu’outil analytique, vise à caractériser l’organisation spatio-temporelle des sols d’occupation à l’échelle du site, selon une approche spatiale des processus de formation de la stratification archéologique. L’élaboration d’un modèle, qui repose sur une classification des micro-faciès sédimentaires selon le système d’activité, et son application à des sites-laboratoires permettent de qualifier les techniques de construction en terre, l’usage du sol et les dynamiques d’occupation propres à chaque site, dans le but de déterminer les comportements socio-économiques et les spécificités du mode de vie villageois enregistrées par les sols. Cette approche permet d’évaluer les constantes et les variables qui qualifient les différents types d’occupation. Le sol, conçu comme matérialité de l’espace villageois, devient ainsi un témoignage direct de la variabilité culturelle et des différentes formes d’organisation des communautés de la fin du Néolithique et de l’âge du Bronze.
Resumo:
There are only a few insights concerning the influence that agronomic and management variability may have on superficial scald (SS) in pears. Abate Fétel pears were picked during three seasons (2018, 2019 and 2020) from thirty commercial orchards in the Emilia Romagna region, Italy. Using a multivariate statistical approach, high heterogeneity between farms for SS development after cold storage with regular atmosphere was demonstrated. Indeed, some factors seem to affect SS in all growing seasons: high yields, soil texture, improper irrigation and Nitrogen management, use of plant growth regulators, late harvest, precipitations, Calcium and cow manure, presence of nets, orchard age, training system and rootstock. Afterwards, we explored the spatio/temporal variability of fruit attributes in two pear orchards. Environmental and physiological spatial variables were recorded by a portable RTK GPS. High spatial variability of the SS index was observed. Through a geostatistical approach, some characteristics, including soil electrical conductivity and fruit size, have been shown to be negatively correlated with SS. Moreover, regression tree analyses were applied suggesting the presence of threshold values of antioxidant capacity, total phenolic content, and acidity against SS. High pulp firmness and IAD values before storage, denoting a more immature fruit, appeared to be correlated with low SS. Finally, a convolution neural networks (CNN) was tested to detect SS and the starch pattern index (SPI) in pears for portable device applications. Preliminary statistics showed that the model for SS had low accuracy but good precision, and the CNN for SPI denoted good performances compared to the Ctifl and Laimburg scales. The major conclusion is that Abate Fétel pears can potentially be stored in different cold rooms, according to their origin and quality features, ensuring the best fruit quality for the final consumers. These results might lead to a substantial improvement in the Italian pear industry.
Resumo:
Astrocytes are the most numerous glial cell type in the mammalian brain and permeate the entire CNS interacting with neurons, vasculature, and other glial cells. Astrocytes display intracellular calcium signals that encode information about local synaptic function, distributed network activity, and high-level cognitive functions. Several studies have investigated the calcium dynamics of astrocytes in sensory areas and have shown that these cells can encode sensory stimuli. Nevertheless, only recently the neuro-scientific community has focused its attention on the role and functions of astrocytes in associative areas such as the hippocampus. In our first study, we used the information theory formalism to show that astrocytes in the CA1 area of the hippocampus recorded with 2-photon fluorescence microscopy during spatial navigation encode spatial information that is complementary and synergistic to information encoded by nearby "place cell" neurons. In our second study, we investigated various computational aspects of applying the information theory formalism to astrocytic calcium data. For this reason, we generated realistic simulations of calcium signals in astrocytes to determine optimal hyperparameters and procedures of information measures and applied them to real astrocytic calcium imaging data. Calcium signals of astrocytes are characterized by complex spatiotemporal dynamics occurring in subcellular parcels of the astrocytic domain which makes studying these cells in 2-photon calcium imaging recordings difficult. However, current analytical tools which identify the astrocytic subcellular regions are time consuming and extensively rely on user-defined parameters. Here, we present Rapid Astrocytic calcium Spatio-Temporal Analysis (RASTA), a novel machine learning algorithm for spatiotemporal semantic segmentation of 2-photon calcium imaging recordings of astrocytes which operates without human intervention. We found that RASTA provided fast and accurate identification of astrocytic cell somata, processes, and cellular domains, extracting calcium signals from identified regions of interest across individual cells and populations of hundreds of astrocytes recorded in awake mice.
Resumo:
Ziel dieser Dissertation ist es, die grundlegenden philosophisch-theoretischen Implikationen von Schellings letzter systematischer Darlegung seiner Naturphilosophie nach dem Berliner Textfragment von 1843/44, der “Darstellung des Naturprocesses”, zu untersuchen. Angesichts der sich zwischen den 1830 und den 1860 Jahren in Berlin abzeichnenden neuen intellektuellen Tendenzen und der Entwicklungen in den Naturwissenschaften legt Schelling hier die Grundlagen für eine allgemeine Ontologie des Wirklichen in kritischer Auseinandersetzung mit Kants transzendentalem Idealismus. Innerhalb des systematischen Horizonts der "apriorischen Vernunftwissenschaft" oder "negativen Philosophie" stellt er im ersten Teil seines Werkes die Prinzipien fest, die die „Idee des Existierenden“ ausmachen, und beschreibt die rationale Operation, die durchgeführt werden muss, um zum Gedanken einer „Welt außer der Idee“ zu gelangen. Die philosophisch-systematischen Annahmen, die mit dem Übergang von der bloßen Idee des Existierenden zum Gedanken der außeridealen Welt verbunden sind, werden im ersten Kapitel dieser Dissertation untersucht. Im zweiten Teil seines Werkes definiert Schelling durch eine detaillierte Analyse von Kants Transzendentalen Ästhetik den Raum als diejenige Form, in der uns die Existenzen als voneinander getrennt vorstellen lassen. Obwohl der Zeitbegriff von Schelling nur am Rande behandelt wird, trägt er zusammen mit dem Raum dazu bei, die erste ontologische Grundstruktur der außeridealen Welt zu definieren. Die Analyse von Schellings Konzeption der raumzeitlichen Grundstruktur der außeridealen Welt stellt das Thema des zweiten Kapitels dieser Dissertation dar. Schließlich bestimmt Schelling im dritten Teil seines Werkes die Finalität als diejenige Kausalitätsform, die es ermöglicht, die außerideale Welt als einen werdenden Kontext zu verstehen, dessen Entwicklungsstufen die siderische Welt, die unorganische Welt und die organische Welt sind. Die Schelling‘sche Definition der Teleologie der Natur als zweite ontologische Grundstruktur der außeridealen Welt ist das Thema des dritten Kapitels dieser Dissertation.
Resumo:
Maximum entropy modeling (Maxent) is a widely used algorithm for predicting species distributions across space and time. Properly assessing the uncertainty in such predictions is non-trivial and requires validation with independent datasets. Notably, model complexity (number of model parameters) remains a major concern in relation to overfitting and, hence, transferability of Maxent models. An emerging approach is to validate the cross-temporal transferability of model predictions using paleoecological data. In this study, we assess the effect of model complexity on the performance of Maxent projections across time using two European plant species (Alnus giutinosa (L.) Gaertn. and Corylus avellana L) with an extensive late Quaternary fossil record in Spain as a study case. We fit 110 models with different levels of complexity under present time and tested model performance using AUC (area under the receiver operating characteristic curve) and AlCc (corrected Akaike Information Criterion) through the standard procedure of randomly partitioning current occurrence data. We then compared these results to an independent validation by projecting the models to mid-Holocene (6000 years before present) climatic conditions in Spain to assess their ability to predict fossil pollen presence-absence and abundance. We find that calibrating Maxent models with default settings result in the generation of overly complex models. While model performance increased with model complexity when predicting current distributions, it was higher with intermediate complexity when predicting mid-Holocene distributions. Hence, models of intermediate complexity resulted in the best trade-off to predict species distributions across time. Reliable temporal model transferability is especially relevant for forecasting species distributions under future climate change. Consequently, species-specific model tuning should be used to find the best modeling settings to control for complexity, notably with paleoecological data to independently validate model projections. For cross-temporal projections of species distributions for which paleoecological data is not available, models of intermediate complexity should be selected.
Resumo:
Novel imaging techniques are playing an increasingly important role in drug development, providing insight into the mechanism of action of new chemical entities. The data sets obtained by these methods can be large with complex inter-relationships, but the most appropriate statistical analysis for handling this data is often uncertain - precisely because of the exploratory nature of the way the data are collected. We present an example from a clinical trial using magnetic resonance imaging to assess changes in atherosclerotic plaques following treatment with a tool compound with established clinical benefit. We compared two specific approaches to handle the correlations due to physical location and repeated measurements: two-level and four-level multilevel models. The two methods identified similar structural variables, but higher level multilevel models had the advantage of explaining a greater proportion of variation, and the modeling assumptions appeared to be better satisfied.
Resumo:
Cannabis sativa has been associated with contradictory effects upon seizure states despite its medicinal use by numerous people with epilepsy. We have recently shown that the phytocannabinoid cannabidiol (CBD) reduces seizure severity and lethality in the well-established in vivo model of pentylenetetrazoleinduced generalised seizures, suggesting that earlier, small-scale clinical trials examining CBD effects in people with epilepsy warrant renewed attention. Here, we report the effects of pure CBD (1, 10 and 100 mg/kg) in two other established rodent seizure models, the acute pilocarpine model of temporal lobe seizure and the penicillin model of partial seizure. Seizure activity was video recorded and scored offline using model-specific seizure severity scales. In the pilocarpine model CBD (all doses) significantly reduced the percentage of animals experiencing the most severe seizures. In the penicillin model, CBD (�10 mg/kg) significantly decreased the percentage mortality as a result of seizures; CBD (all doses) also decreased the percentage of animals experiencing the most severe tonic–clonic seizures. These results extend the anticonvulsant profile of CBD; when combined with a reported absence of psychoactive effects, this evidence strongly supports CBD as a therapeutic candidate for a diverse range of human epilepsies.
Resumo:
The high computational cost of calculating the radiative heating rates in numerical weather prediction (NWP) and climate models requires that calculations are made infrequently, leading to poor sampling of the fast-changing cloud field and a poor representation of the feedback that would occur. This paper presents two related schemes for improving the temporal sampling of the cloud field. Firstly, the ‘split time-stepping’ scheme takes advantage of the independent nature of the monochromatic calculations of the ‘correlated-k’ method to split the calculation into gaseous absorption terms that are highly dependent on changes in cloud (the optically thin terms) and those that are not (optically thick). The small number of optically thin terms can then be calculated more often to capture changes in the grey absorption and scattering associated with cloud droplets and ice crystals. Secondly, the ‘incremental time-stepping’ scheme uses a simple radiative transfer calculation using only one or two monochromatic calculations representing the optically thin part of the atmospheric spectrum. These are found to be sufficient to represent the heating rate increments caused by changes in the cloud field, which can then be added to the last full calculation of the radiation code. We test these schemes in an operational forecast model configuration and find a significant improvement is achieved, for a small computational cost, over the current scheme employed at the Met Office. The ‘incremental time-stepping’ scheme is recommended for operational use, along with a new scheme to correct the surface fluxes for the change in solar zenith angle between radiation calculations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
High-impact, localized intense rainfall episodes represent a major socio-economic problem for societies worldwide, and at the same time these events are notoriously difficult to simulate properly in climate models. Here, the authors investigate how horizontal resolution and model formulation influence this issue by applying the HARMONIE regional climate model (HCLIM) with three different setups; two using convection parameterization at 15 and 6.25 km horizontal resolution (the latter within the “grey-zone” scale), with lateral boundary conditions provided by ERA-Interim reanalysis and integrated over a pan-European domain, and one with explicit convection at 2 km resolution (HCLIM2) over the Alpine region driven by the 15 km model. Seven summer seasons were sampled and validated against two high-resolution observational data sets. All HCLIM versions underestimate the number of dry days and hours by 20-40%, and overestimate precipitation over the Alpine ridge. Also, only modest added value were found of “grey-zone” resolution. However, the single most important outcome is the substantial added value in HCLIM2 compared to the coarser model versions at sub-daily time scales. It better captures the local-to-regional spatial patterns of precipitation reflecting a more realistic representation of the local and meso-scale dynamics. Further, the duration and spatial frequency of precipitation events, as well as extremes, are closer to observations. These characteristics are key ingredients in heavy rainfall events and associated flash floods, and the outstanding results using HCLIM in convection-permitting setting are convincing and encourage further use of the model to study changes in such events in changing climates.
Resumo:
Plantings of mixed native species (termed 'environmental plantings') are increasingly being established for carbon sequestration whilst providing additional environmental benefits such as biodiversity and water quality. In Australia, they are currently one of the most common forms of reforestation. Investment in establishing and maintaining such plantings relies on having a cost-effective modelling approach to providing unbiased estimates of biomass production and carbon sequestration rates. In Australia, the Full Carbon Accounting Model (FullCAM) is used for both national greenhouse gas accounting and project-scale sequestration activities. Prior to undertaking the work presented here, the FullCAM tree growth curve was not calibrated specifically for environmental plantings and generally under-estimated their biomass. Here we collected and analysed above-ground biomass data from 605 mixed-species environmental plantings, and tested the effects of several planting characteristics on growth rates. Plantings were then categorised based on significant differences in growth rates. Growth of plantings differed between temperate and tropical regions. Tropical plantings were relatively uniform in terms of planting methods and their growth was largely related to stand age, consistent with the un-calibrated growth curve. However, in temperate regions where plantings were more variable, key factors influencing growth were planting width, stand density and species-mix (proportion of individuals that were trees). These categories provided the basis for FullCAM calibration. Although the overall model efficiency was only 39-46%, there was nonetheless no significant bias when the model was applied to the various planting categories. Thus, modelled estimates of biomass accumulation will be reliable on average, but estimates at any particular location will be uncertain, with either under- or over-prediction possible. When compared with the un-calibrated yield curves, predictions using the new calibrations show that early growth is likely to be more rapid and total above-ground biomass may be higher for many plantings at maturity. This study has considerably improved understanding of the patterns of growth in different types of environmental plantings, and in modelling biomass accumulation in young (<25. years old) plantings. However, significant challenges remain to understand longer-term stand dynamics, particularly with temporal changes in stand density and species composition. © 2014.
Resumo:
Because GABA (gamma-aminobutyric acid) receptor-mediated inhibition controls the excitability of principal neurons in the brain, deficits in GABAergic inhibition have long been favored to explain seizures. In an experimental model of temporal lobe epilepsy, we have identified a deficit of inhibition in presynaptic GABAergic terminals characterized by decreased GABA quantal activity associated with reduced synaptic vesicle density. This decrease in vesicle number primarily seems to affect the reserve pool, rather than the docked or the readily releasable pool.
Resumo:
This thesis is concerned with change point analysis for time series, i.e. with detection of structural breaks in time-ordered, random data. This long-standing research field regained popularity over the last few years and is still undergoing, as statistical analysis in general, a transformation to high-dimensional problems. We focus on the fundamental »change in the mean« problem and provide extensions of the classical non-parametric Darling-Erdős-type cumulative sum (CUSUM) testing and estimation theory within highdimensional Hilbert space settings. In the first part we contribute to (long run) principal component based testing methods for Hilbert space valued time series under a rather broad (abrupt, epidemic, gradual, multiple) change setting and under dependence. For the dependence structure we consider either traditional m-dependence assumptions or more recently developed m-approximability conditions which cover, e.g., MA, AR and ARCH models. We derive Gumbel and Brownian bridge type approximations of the distribution of the test statistic under the null hypothesis of no change and consistency conditions under the alternative. A new formulation of the test statistic using projections on subspaces allows us to simplify the standard proof techniques and to weaken common assumptions on the covariance structure. Furthermore, we propose to adjust the principal components by an implicit estimation of a (possible) change direction. This approach adds flexibility to projection based methods, weakens typical technical conditions and provides better consistency properties under the alternative. In the second part we contribute to estimation methods for common changes in the means of panels of Hilbert space valued time series. We analyze weighted CUSUM estimates within a recently proposed »high-dimensional low sample size (HDLSS)« framework, where the sample size is fixed but the number of panels increases. We derive sharp conditions on »pointwise asymptotic accuracy« or »uniform asymptotic accuracy« of those estimates in terms of the weighting function. Particularly, we prove that a covariance-based correction of Darling-Erdős-type CUSUM estimates is required to guarantee uniform asymptotic accuracy under moderate dependence conditions within panels and that these conditions are fulfilled, e.g., by any MA(1) time series. As a counterexample we show that for AR(1) time series, close to the non-stationary case, the dependence is too strong and uniform asymptotic accuracy cannot be ensured. Finally, we conduct simulations to demonstrate that our results are practically applicable and that our methodological suggestions are advantageous.