877 resultados para sparse matrices
Resumo:
Software simulation models are computer programs that need to be verified and debugged like any other software. In previous work, a method for error isolation in simulation models has been proposed. The method relies on a set of feature matrices that can be used to determine which part of the model implementation is responsible for deviations in the output of the model. Currrently these feature matrices have to be generated by hand from the model implementation, which is a tedious and error-prone task. In this paper, a method based on mutation analysis, as well as prototype tool support for the verification of the manually generated feature matrices is presented. The application of the method and tool to a model for wastewater treatment shows that the feature matrices can be verified effectively using a minimal number of mutants.
Resumo:
We develop an approach for a sparse representation for Gaussian Process (GP) models in order to overcome the limitations of GPs caused by large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the model. Experimental results on toy examples and large real-world datasets indicate the efficiency of the approach.
Resumo:
We develop an approach for sparse representations of Gaussian Process (GP) models (which are Bayesian types of kernel machines) in order to overcome their limitations for large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the GP model. By using an appealing parametrisation and projection techniques that use the RKHS norm, recursions for the effective parameters and a sparse Gaussian approximation of the posterior process are obtained. This allows both for a propagation of predictions as well as of Bayesian error measures. The significance and robustness of our approach is demonstrated on a variety of experiments.
Resumo:
In recent years there has been an increased interest in applying non-parametric methods to real-world problems. Significant research has been devoted to Gaussian processes (GPs) due to their increased flexibility when compared with parametric models. These methods use Bayesian learning, which generally leads to analytically intractable posteriors. This thesis proposes a two-step solution to construct a probabilistic approximation to the posterior. In the first step we adapt the Bayesian online learning to GPs: the final approximation to the posterior is the result of propagating the first and second moments of intermediate posteriors obtained by combining a new example with the previous approximation. The propagation of em functional forms is solved by showing the existence of a parametrisation to posterior moments that uses combinations of the kernel function at the training points, transforming the Bayesian online learning of functions into a parametric formulation. The drawback is the prohibitive quadratic scaling of the number of parameters with the size of the data, making the method inapplicable to large datasets. The second step solves the problem of the exploding parameter size and makes GPs applicable to arbitrarily large datasets. The approximation is based on a measure of distance between two GPs, the KL-divergence between GPs. This second approximation is with a constrained GP in which only a small subset of the whole training dataset is used to represent the GP. This subset is called the em Basis Vector, or BV set and the resulting GP is a sparse approximation to the true posterior. As this sparsity is based on the KL-minimisation, it is probabilistic and independent of the way the posterior approximation from the first step is obtained. We combine the sparse approximation with an extension to the Bayesian online algorithm that allows multiple iterations for each input and thus approximating a batch solution. The resulting sparse learning algorithm is a generic one: for different problems we only change the likelihood. The algorithm is applied to a variety of problems and we examine its performance both on more classical regression and classification tasks and to the data-assimilation and a simple density estimation problems.
Resumo:
Resource allocation in sparsely connected networks, a representative problem of systems with real variables, is studied using the replica and Bethe approximation methods. An efficient distributed algorithm is devised on the basis of insights gained from the analysis and is examined using numerical simulations,showing excellent performance and full agreement with the theoretical results. The physical properties of the resource allocation model are discussed.
Resumo:
The problem of resource allocation in sparse graphs with real variables is studied using methods of statistical physics. An efficient distributed algorithm is devised on the basis of insight gained from the analysis and is examined using numerical simulations, showing excellent performance and full agreement with the theoretical results.
Resumo:
The optimization of resource allocation in sparse networks with real variables is studied using methods of statistical physics. Efficient distributed algorithms are devised on the basis of insight gained from the analysis and are examined using numerical simulations, showing excellent performance and full agreement with the theoretical results.
Resumo:
We develop an approach for sparse representations of Gaussian Process (GP) models (which are Bayesian types of kernel machines) in order to overcome their limitations for large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the GP model. By using an appealing parametrisation and projection techniques that use the RKHS norm, recursions for the effective parameters and a sparse Gaussian approximation of the posterior process are obtained. This allows both for a propagation of predictions as well as of Bayesian error measures. The significance and robustness of our approach is demonstrated on a variety of experiments.
Resumo:
Investigations were undertaken to study the role of the protein cross-linking enzyme tissue transglutaminase in changes associated with the extracellular matrix and in the cell death of human dermal fibroblasts following exposure to a solarium ultraviolet A source consisting of 98.8% ultraviolet A and 1.2% ultraviolet B. Exposure to nonlethal ultraviolet doses of 60 to 120 kJ per m2 resulted in increased tissue transglutaminase activity when measured either in cell homogenates, "in situ" by incorporation of fluorescein-cadaverine into the extracellular matrix or by changes in the epsilon(gamma-glutamyl) lysine cross-link. This increase in enzyme activity did not require de novo protein synthesis. Incorporation of fluorescein-cadaverine into matrix proteins was accompanied by the cross-linking of fibronectin and tissue transglutaminase into nonreducible high molecular weight polymers. Addition of exogenous tissue transglutaminase to cultured cells mimicking extensive cell leakage of the enzyme resulted in increased extracellular matrix deposition and a decreased rate of matrix turnover. Exposure of cells to 180 kJ per m2 resulted in 40% to 50% cell death with dying cells showing extensive tissue transglutaminase cross-linking of intracellular proteins and increased cross-linking of the surrounding extracellular matrix, the latter probably occurring as a result of cell leakage of tissue transglutaminase. These cells demonstrated negligible caspase activation and DNA fragmentation but maintained their cell morphology. In contrast, exposure of cells to 240 kJ per m2 resulted in increased cell death with caspase activation and some DNA fragmentation. These cells could be partially rescued from death by addition of caspase inhibitors. These data suggest that changes in cross-linking both in the intracellular and extracellular compartments elicited by tissue transglutaminase following exposure to ultraviolet provides a rapid tissue stabilization process following damage, but as such may be a contributory factor to the scarring process that results.
Resumo:
A novel direct integration technique of the Manakov-PMD equation for the simulation of polarisation mode dispersion (PMD) in optical communication systems is demonstrated and shown to be numerically as efficient as the commonly used coarse-step method. The main advantage of using a direct integration of the Manakov-PMD equation over the coarse-step method is a higher accuracy of the PMD model. The new algorithm uses precomputed M(w) matrices to increase the computational speed compared to a full integration without loss of accuracy. The simulation results for the probability distribution function (PDF) of the differential group delay (DGD) and the autocorrelation function (ACF) of the polarisation dispersion vector for varying numbers of precomputed M(w) matrices are compared to analytical models and results from the coarse-step method. It is shown that the coarse-step method achieves a significantly inferior reproduction of the statistical properties of PMD in optical fibres compared to a direct integration of the Manakov-PMD equation.
Resumo:
Very large spatially-referenced datasets, for example, those derived from satellite-based sensors which sample across the globe or large monitoring networks of individual sensors, are becoming increasingly common and more widely available for use in environmental decision making. In large or dense sensor networks, huge quantities of data can be collected over small time periods. In many applications the generation of maps, or predictions at specific locations, from the data in (near) real-time is crucial. Geostatistical operations such as interpolation are vital in this map-generation process and in emergency situations, the resulting predictions need to be available almost instantly, so that decision makers can make informed decisions and define risk and evacuation zones. It is also helpful when analysing data in less time critical applications, for example when interacting directly with the data for exploratory analysis, that the algorithms are responsive within a reasonable time frame. Performing geostatistical analysis on such large spatial datasets can present a number of problems, particularly in the case where maximum likelihood. Although the storage requirements only scale linearly with the number of observations in the dataset, the computational complexity in terms of memory and speed, scale quadratically and cubically respectively. Most modern commodity hardware has at least 2 processor cores if not more. Other mechanisms for allowing parallel computation such as Grid based systems are also becoming increasingly commonly available. However, currently there seems to be little interest in exploiting this extra processing power within the context of geostatistics. In this paper we review the existing parallel approaches for geostatistics. By recognising that diffeerent natural parallelisms exist and can be exploited depending on whether the dataset is sparsely or densely sampled with respect to the range of variation, we introduce two contrasting novel implementations of parallel algorithms based on approximating the data likelihood extending the methods of Vecchia [1988] and Tresp [2000]. Using parallel maximum likelihood variogram estimation and parallel prediction algorithms we show that computational time can be significantly reduced. We demonstrate this with both sparsely sampled data and densely sampled data on a variety of architectures ranging from the common dual core processor, found in many modern desktop computers, to large multi-node super computers. To highlight the strengths and weaknesses of the diffeerent methods we employ synthetic data sets and go on to show how the methods allow maximum likelihood based inference on the exhaustive Walker Lake data set.