979 resultados para soil chemical property
Resumo:
Pseudomonas aeruginosa LBI isolated from petroleum-contaminated soil produced rhamnolipids (RLLBI) when cultivated on soapstock as the sole carbon source. HPLC-MS analysis of the purified culture supernatant identified 6 RL homologues (%): R-2 C-10 C-10 28.9; R-2 C-10 C-12:1 23.0; R-1 C-10 C-10 23.4; R-2 C-10 C-12 11.3; R-2 C-10 C-12 7.9; R-2 C-10 C-12 C-12 5.5. To assess the potential antimicrobial activity of the new rhamnolipid product, RLLBI, its physicochemical properties were studied. RLLBI had a surface tension of 24 mN m(-1) and an interfacial tension 1.31 mN m(-1); the cmc was 120 mg l(-1). RLLBI produced stable emulsions with hydrocarbons and vegetable oils. This product showed good antimicrobial behaviour against bacteria: MIC for Bacillus subtilis, Staphylococcus aureus and Proteus vulgaris was 8 mg l(-1), for Streptococcus faecalis 4 mg l(-1), and for Pseudomonas aeruginosa 32 mg l(-1). RLLBI was active against phytopathogenic fungal species, MIC values of 32 mg l(-1) being found against Penicillium, Alternaria, Gliocadium virens and Chaetonium globosum. Due to its physicochemical properties and antimicrobial behaviour, RLLBI could be used in bioremediation treatment and in the food, cosmetic and pharmaceutical industries.
Resumo:
The analysis of the effect of soil water matric potential and temperature regimes on the inactivation of chlamydospores of Phytophthora nicotianae in cabbage amended soils was evaluated using three matric potentials (0, -10, and -30 kPa), temperature regimes of 1.5 h at 44 degreesC, 5 h at 41 degreesC and 8 h at 35 degreesC, or 3 h at 47 degreesC, 5 h at 44 degreesC and 8 h at 35 degreesC, with a baseline temperature of 25 degreesC during the rest of the day. The results indicated that survival of P. nicotianae was lowest in saturated soil; and as temperature increased, survival of the pathogen decreased at all soil water matric potentials evaluated. Cabbage amendments can enhance the effect of the heat treatment, further decreasing the pathogen population. The soil water matric potentials evaluated represent optimum levels for the study of thermal inactivation. However, under field conditions lower potentials may be found. Extending the range of soil water matric potentials and the treatment time would allow better comparisons with the field data. There is a clear indication that one irrigation period prior to solarization would provide enough moisture to inactivate the primary inoculum of P. nicotianae in the top soil under field conditions; however, other factors may affect the effectiveness of solarization, reducing or enhancing its potential.
Resumo:
This work evaluates some collateral effects caused by the application of the Fenton process to 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) and diesel degradation in soil. While about 80% of the diesel and 75% of the DDT present in the soil were degraded in a slurry system, the dissolved organic carbon (DOC) in the slurry filtrate increased from 80 to 880 mg l(-1) after 64 h of reaction and the DDT concentration increased from 12 to 50 mu g l(-1). Experiments of diesel degradation conducted on silica evidenced that soluble compounds were also formed during diesel oxidation. Furthermore, significant increase in metal concentrations was also observed in the slurry filtrate after the Fenton treatment when compared to the control experiment leading to excessive concentrations of Cr, Ni, Cu and Mn according to the limits imposed for water. Moreover, 80% of the organic matter naturally present in the soil was degraded and a drastic volatilization of DDT and 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene was observed. Despite the high percentages of diesel and DDT degradation in soil, the potential overall benefits of its application must be evaluated beforehand taking into account the metal and target compounds dissolution and the volatilization of contaminants when the process is applied. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The problems caused by the residual effluents of wine distilleries for alcohol production are well known. The effluent effects in soil and groundwater are being researched in an area with sugar cane culture which receives, yearly, vinasse by dispersion. Samples are being collected from the soil, the groundwater and the existing creeks in the area. Four sub-areas are being monitored separately with a vinasse application of 300 m 3/ha year. Experimentation periods in each area have been 0, 5, 10 and 15 years. In the unsaturated zone, samples are being collected at depths of 25, 75 and 150 cm. The chemical analyses include macro and micro nutrients, organic matter and pH. Physical analyses give the soil water retention, hydraulic conductivity and soil particle distribution. These measurements permit the evaluation of nitrogen absorption and fertility changes of the soil. A tendency for the maintenance of soil fertility can be observed but with an elevation of nitrate concentration in groundwater.
Resumo:
A small-scale method was developed for the simultaneous determination of γ-HCH, heptachlor, aldrin, dicofol, mirex, endosulfan I, endosulfan II and endosulfan sulphate in soil. The extraction and clean-up steps were combined into one step by transferring soil samples to chromatographic columns prepacked with neutral alumina. The pesticides elution was processed with n-hexane : dichloromethane (7:3) and the concentrated eluate was analysed using gas-liquid chromatography with electron capture detection. Analyses of the in vitro fortified samples with the selected pesticides were performed at three different levels. Mean recoveries for aldrin, γ-HCH and heptachlor, at levels of 2, 10 and 20 ng/g, ranged from 71 to 87%; for dicofol, at levels of 8, 40 and 80 ng/g, ranged from 97 to 103%; for endosulfan I and II, at levels of 5, 25 and 50 ng/g, ranged from 88 to 96%; for mirex, at levels of 6, 30 and 60 ng/g, ranged from 86 to 110%; and for endosulfan sulphate, at levels of 15, 75 and 150 ng/g, ranged from 93 to 104%. The method can be used for rapid determination of these pesticides in soil. © Springer-Verlag 1996.
Resumo:
Crop rotation using cover crops with vigorous root systems may be a tool to manage soils with some degree of compaction. Root and shoot growth as well as nutrient accumulation by summer species suitable for crop rotation in tropical areas were studied at different subsoil compaction levels. Crotalaria juncea (Indian hemp), Crotalaria spectabilis (showy crotalaria), Helianthus annuus (sunflower), Pennisetum americanum (pearl millet) and Sorghum bicolor (guinea sorghum) were grown for 40 days in pots 33.5 cm high with 10 cm internal diameter. Soil in the pots had uniform bulkdensity of 1.25 Mg m-3 for the top and bottom 15 cm sections. Bulk densities of 1.31, 1.43, 1.58 and 1.70 Mg m-3 Were established in the 3.5 cm middle section. H. annuus and P. americanum had the highest early macronutrient accumulation. The grasses S. bicolor and P. americanum yielded twice as much shoot dry matter as the other species. Root growth generally decreased with increasing soil bulk density with C. spectabilis less affected than other species. Although the grasses were more sensitive to high soil penetration resistance, they showed higher root length densities at all compaction levels. P. americanum had the highest potential to be used as cover crop due to its high root density at high soil penetration resistances, vegetative vigour and ability to accumulate macronutrients. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Fruit of 28 tomato cultivars for industrial processing were characterized to identify cultivars with potential for in natura consumption. The experiment was carried out in Jaboticabal-SP, Brazil (21o15'22'' South, 48o18'58'' West, altitude 595 m), on a Haplorthox soil during June-December. The cultivars used in this study were: H 7155, Hypeel 108, Andino, U 573, H 9036, Ipa 6, H 9494, AG 33, Yuba, RPT 1294, AG 72, Peelmech, Curicó, Hypeel 45, RPT 1478, H 9492, H 9498, H 2710, Hitech 45, Halley, Botu 13, H 9553, U 646, NK 1570, AG 45, RPT 1095, RPT 1570 and PSX 37511. The experimental design was randomized blocks, replicated four times. Ten fruits per plot were analyzed, evaluating the following characteristics: shape (oblong or round); length and diameter (mm); external and internal coloration; presence of fissures; number of loci; pulp thickness (mm); soluble solids content (Brix) and total acidity. Only cultivars Hypeel 108, AG 72, NK 1570, RPT 1570 had oblong fruit. Cultivars which had pulp thicker than 5.5 mm, a characteristic which is directly related to fruit yield for industrial purposes were: Ipa 6, Andino, U 646, H 9553, RPT 1294 and Hypeel 108. Cultivars Ipa 6 and Andino also presented elevated values for length, diameter and pulp thickness, indicating them as quality material for industry or, alternatively, for in natura market. Among the cultivars which presented better values for acidity (higher or equal to 0.3 g citric acid 100 g-1) were RPT 1095, AG 45, H 9553 and Hypeel 45.
Resumo:
This work studied alterations of physical properties of a distroferric red nitosol due to millet (Pennisetum americanum) covering, with or without liming, in a no-tillage system during the agricultural years of 1999/2000 and 2000/2001, using soybean and corn as culture succession. 6m×10m plots, with and without millet as vegetal covering, received only one initial superficial application of limestone, 3.1 t ha-1 in the first half of each plot in order to obtain 70% base saturation (V), after the desiccation of the millet. Some physical properties as soil density, aggregate stability, > 2 mm aggregate proportion, macro and micro porosity were analyzed whereas the chemical analysis determined Ca and Mg macro nutrients, organic matter, soil pH and H+Al. Millet vegetal residues and surface liming did not alter soil density nor the average weight diameter (AWD), > 2 mm aggregate, soil macro porosity and organic matter content, twenty-four months after the no-tillage system implantation for studied experimental conditions. Soil micro porosity was significantly affected in layers deeper than 0.20 m, in treatment with millet and limestone. Calcium, magnesium and H + Al contents and the soil pH values suffered significant alterations in superficial layer, between 0-0.05 m.
Resumo:
After the prohibition of organochlorine-pesticide use in Brazil for controlling insect vector diseases, Mato Grosso State gathered the exceeding DDT and stored it irregularly in an open air area that belongs to the National Health Foundation, causing soil contamination. This study aimed to evaluate the contamination level and dissipation of p,p′-DDT and p,p′-DDE in this area. For that, surface soil samples were collected on 19 September 2000, 15 December 2000, 4 April 2001 and soil samples 30-40 cm; 60-70 cm and 90-100 cm deep were taken from five points in the studied area on 17 July 2001. The contaminants were determined by a small scale method which consists on extraction and clean-up steps combined into one step by transferring soil samples mixed with neutral alumina to a chromatographic column prepacked with neutral alumina and elution with hexane:dichloromethane (7:3 v:v). The eluate was concentrated and the analytes were quantified by gas chromatography with an electron-capture detector. p,p′-DDT at surface soil ranged from 3800 to 7300 mg kg -1. 30-40 cm deep soil sample concentrations varied from 0.036 to 440 mg kg -1 while 90-100 cm deep samples varied from 0.069 to 180 mg kg -1. Volatilization is probably the main dissipation process. The p,p′-DDT is moving slowly downward in the soil profile, however, the levels of this contaminant are high enough to present risk to underground waters. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
The general concept that low-water-soluble phosphorus (P) fertilizers should be more agronomically effective when applied to acidic soils was developed based on sources containing mainly calcium (Ca)-P compounds, but it may not hold true for sources with different chemical composition. To obtain information related to this issue, two important iron (Fe)-potassium (K)-P compounds present in superphosphates [Fe 3 KH 8 (PO 4 ) 6·6H 2 O, H8, and Fe 3 KH 14 (PO 4 ) 8·4H 2 O, H14] were prepared and characterized. These P sources were used to provide 30 and 60 mg P kg -1 as neutral ammonium citrate (NAC)+H 2 O-soluble P. Reagent-grade monocalcium phosphate (MCP) was used as a standard P source with high water solubility with an additional rate of 120 mg P kg -1 included. Also, mixtures of both Fe-K-P compounds and MCP were prepared to provide 0, 25, 50, 75, and 100% of the total P as MCP. All sources were applied to a clayey loamy acid soil (pH 5.3) classified as Rhodic Kanhapludult. The soil was incubated at two rates (0 and 10 g kg -1 ) of lime, which resulted in pH 5.4 and 6.8. Upland rice was cultivated to maturity. The H14 compound confirmed to be a highly effective source of P for the rice plants at both soil pH, as opposed to the H8, which was poorly effective when applied alone. When mixed with water-soluble P (WSP), the H8 was able to provide P to the plants with the maximum yield of upland rice reached with 54.8 and 80.5% of WSP for pH 5.4 and 6.8, respectively. The high agronomic performance of the H14 compound clearly indicates that this low-water-soluble P source cannot be deemed as ineffective at high soil pH. Copyright © Taylor & Francis Group, LLC.
Resumo:
The objective of this work was to evaluate rates for applications of water treatment sludge (WTS) as a nutrient source for grasses and leguminous plants cropped in a soil degraded by tin mining in the Amazon Region (Natural Forest of Jamari, Rondonia State, Brazil). The treatments consisted of three rates of nitrogen supplied by WTS (100, 150 and 200 mg kg -1 soil), five combinations of plants, two controls (absolute control, without fertilization; and chemical control, soil+lime+chemical fertilizers). WTS modified the contents of macro and micronutrients in the degraded soil, but it was not, as used in the present study, sufficient for the rehabilitation of the degraded area. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
Soil compaction reduces root growth, affecting the yield, especially in the Southern Coastal Plain of the USA. Simulations of the root restricting layers in greenhouses are necessary to develop mechanisms which alleviate soil compaction problems. The selection of three distinct bulk densities based on the Standard Proctor Test is also an important factor to determine which bulk density restricts root penetration. This experiment was conducted to evaluate cotton (Gossypium hirsutum L.) root volume and root dry matter as a function of soil bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6 g cm-3), and two levels of water content (70 and 90% of field capacity) were used. A completely randomized design with four replicates in a 3×2 factorial pattern was used. The results showed that mechanical impedance affected root volume positively with soil bulk density of 1.2 and 1.6 g cm-3, enhancing root growth (P>0.0064). Soil water content reduced root growth as root and shoot growth was higher at 70% field capacity than that at 90% field capacity. Shoot growth was not affected by the increase in soil bulk density and this result suggests that soil bulk density is not a good indicator for measuring mechanical impedance in some soils.