991 resultados para soil CO2 efflux


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on carbon uptake in boreal forests has mainly focused on mature trees, even though ground vegetation species are effective assimilators and can substantially contribute to the CO2 uptake of forests. Here, I examine the photosynthesis of the most common species of ground vegetation in a series of differently aged Scots pine stands, and at two clear-cut sites with substantial differences in fertility. In general, the biomass of evergreen species was highest at poor sites and below canopies, whereas grasses and herbs predominated at fertile sites and open areas. Unlike mosses, the measured vascular species showed clear annual cycles in their photosynthetic activity, which increased earlier and decreased later in evergreen vascular species than in deciduous species. However, intraspecific variation and self-shading create differences in the overall level of photosynthesis. Light, temperature history, soil moisture and recent possible frosts could explain the changes in photosynthesis of low shrubs and partially also some changes in deciduous species. Light and the occurrence of rain events explained most of the variation in the photosynthesis of mosses. The photosynthetic production of ground vegetation was first upscaled, using species-specific and mass-based photosynthetic activities and average biomass of the site, and then integrated over the growing season, using changes in environmental factors. Leaf mass-based photosynthesis was highest in deciduous species, resulting in notably higher photosynthetic production at fertile sites than at poor clear-cut sites. The photosynthetic production decreased with stand age, because flora changed towards evergreen species, and light levels diminished below the canopy. In addition, the leaf mass-based photosynthetic activity of some low shrubs declined with the age of the surrounding trees. Different measuring methods led to different momentary rate of photosynthesis. Therefore, the choice of measuring method needs special attention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physical properties of surface soil horizons, essentially pore size, shape, continuity and affinity for water, regulate water entry into the soil. These properties are prone to changes caused by natural forces and human activity. The hydraulic properties of the surface soil greatly impact the generation of surface runoff and accompanied erosion, the major concern of agricultural water protection. The general target of this thesis was to improve our understanding of the structural and hydraulic properties of boreal clay soils. Physical properties of a clayey surface soil (0 - 10 cm, clay content 51%), with a micaceous/illitic mineralogy subjected to three different management practices of perennial vegetation, were studied. The study sites were vegetated buffer zones located side by side in SW Finland: 1) natural vegetation with no management, 2) harvested once a year, and 3) grazed by cattle. The soil structure, hydraulic properties, shrinkage properties and soil water repellency were determined at all sites. Two distinct flow domains were evident. The surface soil was characterized by subangular blocky, angular blocky and platy aggregates. Hence, large, partially accommodated, irregular elongated pores dominated the macropore domain at all sites. The intra-aggregate pore system was mostly comprised of pores smaller than 30 μm, which are responsible for water storage. Macropores at the grazed site, compacted by hoof pressure, were horizontally oriented and pore connectivity was poorest, which decreased water and air flux compared with other sites. Drying of the soil greatly altered its structure. The decrease in soil volume between wet and dry soil was 7 - 10%, most of which occurred in the moisture range of field conditions. Structural changes, including irreversible collapse of interaggregate pores, began at matric potentials around -6 kPa indicating, instability of soil structure against increasing hydraulic stress. Water saturation and several freezethaw cycles between autumn and spring likely weakened the soil structure. Soil water repellency was observed at all sites at the time of sampling and when soil was dryer than about 40 vol.%. (matric potential < -6 kPa). Therefore, water repellency contributes to water flow over a wide moisture range. Water repellency was also observed in soils with low organic carbon content (< 2%), which suggests that this phenomenon is common in agricultural soils of Finland due to their relatively high organic carbon content. Aggregate-related pedofeatures of dense infillings described as clay intrusions were found at all sites. The formation of these intrusions was attributed to clay dispersion and/or translocation during spring thaw and drying of the suspension in situ. These processes generate very new aggregates whose physical properties are most probably different from those of the bulk soil aggregates. Formation of the clay infillings suggested that prolonged wetness in autumn and spring impairs soil structure due to clay dispersion, while on the other hand it contributes to the pedogenesis of the soil. The results emphasize the dynamic nature of the physical properties of clay soils, essentially driven by their moisture state. In a dry soil, fast preferential flow is favoured by abundant macropores including shrinkage cracks and is further enhanced by water repellency. Increase in soil moisture reduces water repellency, and swelling of accommodated pores lowers the saturated hydraulic conductivity. Moisture- and temperature-related processes significantly alter soil structure over a time span of 1 yr. Thus, the pore characteristics as well as the hydraulic properties of soil are time-dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supercritical carbon dioxide is used to prepare aerogels of two reference molecular organogelators, 2,3-bis-n-decyloxyanthracene (DDOA) (luminescent molecule) and 12-hydroxystearic acid (HSA). Electron microscopy reveals the fibrillar morphology of the aggregates generated by the protocol. SAXS and SANS measurements show that DDOA aerogels are crystalline materials exhibiting three morphs: (1) arrangements of the crystalline solid (2D p6m), (2) a second hexagonal morph slightly more compact, and (3) a packing specific of the fibers in the gel. Aggregates specific of the aerogel (volume fraction being typically phi approximate to 0.60) are developed over larger distances (similar to 1000 angstrom) and bear fewer defaults and residual strains than aggregates in the crystalline and gel phases. Porod, Scherrer and Debye-Bueche analyses of the scattering data have been performed. The first five diffraction peaks show small variations in position and intensity assigned to the variation of the number of fibers and their degree of vicinity within hexagonal bundles of the related SAFIN according to the Oster model. Conclusions are supported by the guidelines offered by the analysis of the situation in HSA aerogels for which the diffraction pattern can be described by two coexisting lamellar-like arrangements. The porosity of the aerogel, as measured by its specific surface extracted from the scattering invariant analysis, is only 1.8 times less than that of the swollen gel and is characteristic of a very porous material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study evaluates the feasibility of undelimbed Scots pine (Pinus sylvestris L.) for integrated production of pulp and energy in a kraft pulp mill from the technical, economic and environmental points of view, focusing on the potential of bundle harvesting. The feasibility of tree sections for pulp production was tested by conducting an industrial wood-handling experiment, laboratory cooking and bleaching trials, using conventional small-diameter Scots pine pulpwood as a reference. These trials showed that undelimbed Scots pine sections can be processed in favourable conditions as a blend with conventional small-diameter pulpwood without reducing the pulp quality. However, fibre losses at various phases of the process may increase when using undelimbed material. In the economic evaluation, both pulp production and wood procurement costs were considered, using the relative wood paying capability of a kraft pulp mill as a determinant. The calculations were made for three Scots pine first-thinning stands with the breast-height diameter of the removal (6 12 cm) as the main distinctive factor. The supply chains included in the comparison were based on cut-to-length harvesting, whole-tree harvesting and bundle harvesting (whole-tree bundling). With the current ratio of pulp and energy prices, the wood paying capability declines with an increase in the proportion of the energy fraction of the raw material. The supply system based on the cut-to-length method was the most efficient option, resulting in the highest residual value at stump in most cases. A decline in the pulp price and an increase in the energy price improved the competitiveness of the whole-tree systems. With short truck transportation distances and low pulp prices, however, the harvesting of loose whole trees can result in higher residual value at stump in small-diameter stands. While savings in transportation costs did not compensate for the high cutting and compaction costs by the second prototype of the bundle harvester, an increase in transportation distances improved its competitiveness. Since harvesting undelimbed assortments increases nutrient export from the site, which can affect soil productivity, the whole-tree alternatives included in the present study cannot be recommended on infertile peatlands and mineral soils. The harvesting of loose whole trees or bundled whole trees implies a reduction in protective logging residues and an increase in site traffic or payloads. These factors increase the risk of soil damage, especially on peat soils with poor bearing capacity. Within the wood procurement parameters which were examined, the CO2 emissions of the supply systems varied from 13 27 kg m3. Compaction of whole trees into bundles reduced emissions from transportation by 30 39%, but these reductions were insufficient to compensate for the increased emissions from cutting and compaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the pedogenic and climatic contexts on the formation and preservation of pedogenic carbonates in a climosequence in the Western Ghats (Karnataka Plateau, South West India) has been studied. Along the climosequence, the current mean annual rainfall (MAR) varies within a 80 km transect from 6000 mm at the edge of the Plateau to 500 mm inland. Pedogenic carbonates occur in the MAR range of 500-1200 mm. In the semi-arid zone (MAR: 500-900 mm), carbonates occur (i) as rhick hardpan calcretes on pediment slopes and (ii) as nodular horizons in polygenic black soils (i.e. vertisols). In the sub-humid zone (MAR: 900-1500 mm), pedogenic carbonates are disseminated in the black soil matrices either as loose, irregular and friable nodules of millimetric size or as indurated botryoidal nodules of centimetric to pluricentimetric size. They also occur at the top layers of the saprolite either as disseminated pluricentimetric indurated nodules or carbonate-cemented lumps of centimetric to decimetric size. Chemical and isotopic (Sr-87/Sr-86) compositions of the carbonate fraction were determined after leaching with 0.25 N HCl. The corresponding residual fractions containing both primary minerals and authigenic clays were digested separately and analyzed. The trend defined by the Sr-87/Sr-86 signatures of both labile carbonate fractions and corresponding residual fractions indicates that a part of the labile carbonate fraction is genetically linked to the local soil composition. Considering the residual fraction of each sample as the most likely lithogenic source of Ca in carbonates, it is estimated that from 24% to 82% (55% on average) of Ca is derived from local bedrock weathering, leading to a consumption of an equivalent proportion of atmospheric CO2. These values indicate that climatic conditions were humid enough to allow silicate weathering: MAR at the time of carbonate formation likely ranged from 400 to 700 mm, which is 2- to 3-fold less than the current MAR at these locations. The Sr, U and Mg contents and the (U-234/U-238) activity ratio in the labile carbonate fraction help to understand the conditions of carbonate formation. The relatively high concentrations of Sr, U and Mg in black soil carbonates may indicate fast growth and accumulation compared to carbonates in saprolite, possibly due to a better confinement of the pore waters which is supported by their high (U-234/U-238) signatures, and/or to higher content of dissolved carbonates in the pore waters. The occurrence of Ce, Mn and Fe oxides in the cracks of carbonate reflects the existence of relatively humid periods after carbonate formation. The carbonate ages determined by the U-Th method range from 1.33 +/- 0.84 kyr to 7.5 +/- 2.7 kyr and to a cluster of five ages around 20 kyr, i.e. the Last Glacial Maximum period. The young occurrences are only located in the black soils, which therefore constitute sensitive environments for trapping and retaining atmospheric CO2 even on short time scales. The maximum age of carbonates depends on their location in the climatic gradient: from about 20 kyr for centimetric nodules at Mule Hole (MAR = 1100 mm/yr) to 200 kyr for the calcrete at Gundlupet (MAR = 700 mm/yr, Durand et al., 2007). The intensity of rainfall during wet periods would indeed control the lifetime of pedogenic carbonates and thus the duration of inorganic carbon storage in soils. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most important dynamic properties required in the design of machine foundations is the stiffness or spring constant of the supporting soil. For a layered soil system, the stiffness obtained from an idealization of soils underneath as springs in series gives the same value of stiffness regardless of the location and extent of individual soil layers with respect to the base of the foundation. This paper aims to develop the importance of the relative positioning of soil layers and their thickness beneath the foundation. A simple and approximate procedure called the weighted average method has been proposed to obtain the equivalent stiffness of a layered soil system knowing the individual values of the layers, their relative position with respect to foundation base, and their thicknesses. The theoretically estimated values from the weighted average method are compared with those obtained by conducting field vibration tests using a square footing over different two- and three-layered systems and are found to be very good. The tests were conducted over a range of static and dynamic loads using three different materials. The results are also compared with the existing methods available in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Equilibrium sediment volume tests are conducted on field soils to classify them based on their degree of expansivity and/or to predict the liquid limit of soils. The present technical paper examines different equilibrium sediment volume tests, critically evaluating each of them. It discusses the settling behavior of fine-grained soils during the soil sediment formation to evolve a rationale for conducting the latest version of equilibrium sediment volume test. Probable limitations of equilibrium sediment volume test and the possible solution to overcome the same have also been indicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of a framed structure with a foundation beam resting on an elastic medium, representing the soil, has been studied using the photoelastic method. The contact pressure distribution, the fibre stress in the foundation beam and frame structure, as well as the stresses in the elastic medium, have been obtained. These have been compared with theoretical results obtained by idealizing the soil as (a) elastic half plane, and (b) elastic half space. It is shown that the photoelastic method can provide an easy solution to this type of problem if the soil can be idealized as an elastic continuum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is huge knowledge gap in our understanding of many terrestrial carbon cycle processes. In this paper, we investigate the bounds on terrestrial carbon uptake over India that arises solely due to CO (2) -fertilization. For this purpose, we use a terrestrial carbon cycle model and consider two extreme scenarios: unlimited CO2-fertilization is allowed for the terrestrial vegetation with CO2 concentration level at 735 ppm in one case, and CO2-fertilization is capped at year 1975 levels for another simulation. Our simulations show that, under equilibrium conditions, modeled carbon stocks in natural potential vegetation increase by 17 Gt-C with unlimited fertilization for CO2 levels and climate change corresponding to the end of 21st century but they decline by 5.5 Gt-C if fertilization is limited at 1975 levels of CO2 concentration. The carbon stock changes are dominated by forests. The area covered by natural potential forests increases by about 36% in the unlimited fertilization case but decreases by 15% in the fertilization-capped case. Thus, the assumption regarding CO2-fertilization has the potential to alter the sign of terrestrial carbon uptake over India. Our model simulations also imply that the maximum potential terrestrial sequestration over India, under equilibrium conditions and best case scenario of unlimited CO2-fertilization, is only 18% of the 21st century SRES A2 scenarios emissions from India. The limited uptake potential of the natural potential vegetation suggests that reduction of CO2 emissions and afforestation programs should be top priorities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Root and butt rot is the most harmful fungal disease affecting Norway spruce in southern Finland. In approximately 90 % of cases the causal agent is Heterobasidion parviporum. Root and butt rot infections have not been reported in Finnish peatlands. However, the increase in logging operations in peatlands means there is a risk that the fungus will eventually spread to these areas. The aim of this study was to find out the impact of growing site on the resistance of Norway spruce to Heterobasidion parviporum infections. This was investigated by artificially inoculating H. parviporum to spruce trees in pristine mire, drained peatland and mineral soil and comparing the defence reactions. Additionally, the effect of genotype on resistance was studied by comparing the responses of spruce clones representing different geographic origins. The roots and stems of the trees to be sampled were wounded and inoculated with wood dowels pre-colonised by H. parviporum hyphae. The resulting necrosis around the point of inoculation was observed. It was presumed that increased length of necrosis indicates high susceptibility of the tree to the disease. The relationship between growth rate and host resistance was also studied. The results indicated that growing site does not have a statistically significant effect on host resistance. The average length of necrosis around the point of inoculation was 35 mm in pristine mire, 37 mm in drained peatland and 40 mm in mineral soil. It was observed that growth rate does not affect resistance, but that the genotype of the tree does have an effect. The most resistant spruce clone was the one with Russian origin. The results suggest that the spruce stands in peatlands are not more resistant to root and butt rot infections than those in mineral soil. These findings should be taken into consideration when logging peatland forests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plane stress solution for the interaction analysis of a framed structure, with a foundation beam, resting on a layered soil has been studied using both theoretical and photoelastic methods. The theoretical analysis has been done by using a combined analytical and finite element method. In this, the analytical solution has been used for the semi-infinite layered medium and finite element method for the framed structure. The experimental investigation has been carried out using two-dimensional photoelasticity in which modelling of the layered semi-infinite plane and a method to obtain contact pressure distribution have been discussed. The theoretical and experimental results in respect of contact pressure distribution between the foundation beam and layered soil medium, the fibre stresses in the foundation beam and framed structure have been compared. These results have also been compared with theoretical results obtained by idealizing the layered semi-infinite plane as (a) a Winkler model and (b) an equivalent homogeneous semi-infinite medium

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt has been made to forecast the potential of thermophilic fungi to grow in soil in the laboratory and in the field in the presence of a predominantly mesophilic fungal flora at usual temperature. The respiratory rate of thermophilic fungi was markedly responsive to changes in temperature, but that of mesophilic fungi was relatively independent of such changes. This suggested that in a thermally fluctuating environment, thermophilic fungi may be at a physiological disadvantage compared to mesophilic fungi. In mixed cultures in soil plates, thermophilic fungi outgrew mesophilic fungi under a fluctuating temperature regime only when the amplitude of the fluctuating temperatures was small and approached their temperature optima for growth. An antibody probe was used to detect the activity of native or an introduced strain of a thermophilic fungus, Thermomyces lanuginosus, under field conditions. The results suggest that although widespread, thermophilic fungi are ordinarily not an active component of soil microflora. Their presence in soil most likely may be the result of the aerial dissemination of propagules from composting plant material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the lower bound limit analysis in conjunction with finite elements and linear programming, the bearing capacity factors due to cohesion, surcharge and unit weight, respectively, have been computed for a circular footing with different values of phi. The recent axisymmetric formulation proposed by the authors under phi = 0 condition, which is based on the concept that the magnitude of the hoop stress (sigma(theta)) remains closer to the least compressive normal stress (sigma(3)), is extended for a general c-phi soil. The computational results are found to compare quite well with the available numerical results from literature. It is expected that the study will be useful for solving various axisymmetric geotechnical stability problems. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recycling plastic waste from water bottles has become one of the major challenges worldwide. The present study provides an approach for the use plastic waste as reinforcement material in soil. The experimental results in the form of stress-strain-pore water pressure response are presented. Based on experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with addition of a small percentage of plastic waste to the soil. The use of the improvement in strength and compressibility response due to inclusion of plastic waste can be advantageously used in bearing capacity improvement and settlement reduction in the design of shallow foundations. (C) 2010 Elsevier Ltd. All rights reserved.