950 resultados para shell beds


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piston cores from the continental margin off Nova Scotia show up to four discrete intervals of "brick-red sandy mud", which are up to 20 cm thick. The ages of these intervals are bracketed by several radiocarbon dates, and three fall in the range 12.5-14.1 ka (radiocarbon years with -0.4 kyr reservoir correction). The youngest dates from ~10.4 ka, placing it within the Younger Dryas. The distribution of the beds and their petrographic character indicate a source in the Gulf of Saint Lawrence. The grain size of these beds suggests that they comprise a coarse component transported by ice rafting that diminishes distally and a fine component that represents suspension fallout from a surface plume and resulting nepheloid layers. Graded brick-red beds in some cores were probably redeposited from turbidity currents. The lowermost bed on the Laurentian Fan and East Scotian Rise is immediately overlain by a carbonate-rich interval that can be identified all around the margin of the Grand Banks. This interval is correlated with detrital carbonate bed DC-1 in the Labrador Sea and Heinrich event H1 in the North Atlantic. The sequential occurrence of the two beds suggests that they may be a response to the same trigger, probably sea level rise, but that the Gulf of Saint Lawrence source was more easily destabilized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine organisms have to cope with increasing CO2 partial pressures and decreasing pH in the oceans. We elucidated the impacts of an 8-week acclimation period to four seawater pCO2 treatments (39, 113, 243 and 405 Pa/385, 1,120, 2,400 and 4,000 µatm) on mantle gene expression patterns in the blue mussel Mytilus edulis from the Baltic Sea. Based on the M. edulis mantle tissue transcriptome, the expression of several genes involved in metabolism, calcification and stress responses was assessed in the outer (marginal and pallial zone) and the inner mantle tissues (central zone) using quantitative real-time PCR. The expression of genes involved in energy and protein metabolism (F-ATPase, hexokinase and elongation factor alpha) was strongly affected by acclimation to moderately elevated CO2 partial pressures. Expression of a chitinase, potentially important for the calcification process, was strongly depressed (maximum ninefold), correlating with a linear decrease in shell growth observed in the experimental animals. Interestingly, shell matrix protein candidate genes were less affected by CO2 in both tissues. A compensatory process toward enhanced shell protection is indicated by a massive increase in the expression of tyrosinase, a gene involved in periostracum formation (maximum 220-fold). Using correlation matrices and a force-directed layout network graph, we were able to uncover possible underlying regulatory networks and the connections between different pathways, thereby providing a molecular basis of observed changes in animal physiology in response to ocean acidification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing atmospheric carbon dioxide levels are causing ocean acidification, compromising the ability of some marine organisms to build and maintain support structures as the equilibrium state of inorganic carbon moves away from calcium carbonate. Few marine organisms tolerate conditions where ocean pH falls significantly below today's value of about 8.1 and aragonite and calcite saturation values below 1. Here we report dense clusters of the vent mussel B. brevior in natural conditions of pH values between 5.36 and 7.29 on northwest Eifuku volcano, Mariana arc, where liquid carbon dioxide and hydrogen sulphide emerge in a hydrothermal setting. We find that both shell thickness and daily growth increments in shells from northwest Eifuku are only about half those recorded from mussels living in water with pH>7.8. Low pH may therefore also be implicated in metabolic impairment. We identify four-decade-old mussels, but suggest that the mussels can survive for so long only if their protective shell covering remains intact: crabs that could expose the underlying calcium carbonate to dissolution are absent from this setting. The mussels' ability to precipitate shells in such low-pH conditions is remarkable. Nevertheless, the vulnerability of molluscs to predators is likely to increase in a future ocean with low pH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing atmospheric carbon dioxide threatens to decrease pH in the world's oceans. Coastal and estuarine calcifying organisms of significant ecological and economical importance are at risk; however, several biogeochemical processes drive pH in these habitats. In particular, coastal and estuarine sediments are frequently undersaturated with respect to calcium carbonate due to high rates of organic matter remineralization, even when overlying waters are saturated. As a result, the post-larval stages of infaunal marine bivalves must be able to deposit new shell material in conditions that are corrosive to shell. We measured calcification rates on the hard clam, Mercenaria spp.,in 5 post-larval size classes (0.39, 0.56, 0.78, 0.98, and 2.90 mm shell height) using the alkalinity anomaly method. Acidity of experimental water was controlled by bubbling with air-CO2 blends to obtain pH values of 8.02, 7.64, and 7.41, corresponding to pCO2 values of 424, 1120, and 1950 µatm. These pH values are typical of those found in many near-shore terrigenous marine sediments. Our results show that calcification rate decreased with lower pH in all 5 size classes measured. We also found a significant effect of size on calcification rate, with the smaller post-larval sizes unable to overcome dissolution pressure. Increased calcification rate with size allowed the larger sizes to overcome dissolution pressure and deposit new shell material under corrosive conditions. Size dependency of pH effects on calcification is likely due to organogenesis and developmental shifts in shell mineralogy occurring through the post-larval stage. Furthermore, we found significantly different calcification rates between the 2 sources of hard clams we used for these experiments, most likely due to genotypic differences. Our findings confirm the susceptibility of the early life stages of this important bivalve to decreasing pH and reveal mechanisms behind the increased mortality in post-larval juvenile hard clams related to dissolution pressure, that has been found in previous studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maerl community respiration, photosynthesis and calcification were measured seasonally in the Bay of Brest (France). The dynamics of oxygen, carbon and carbonate fluxes at the water-sediment interface were assessed using benthic chambers. Community respiration (CR) fluctuated in accordance with the seasonal changes in water temperature, from 1.5 mmol C m**-2 h**-1 in winter to 8.7 mmol C m**-2 h**-1 in summer. Mean gross community production (GCP) varied significantly among seasons, according to incident irradiance and temperature, from 3.4 mmol C m**-2 h**-1 in winter to 12.7 mmol C m-2 h-1 in summer. Mean annual Pmax for the P-E curve was estimated to 13.3 mmol C m-2 h-1. Carbonate precipitation only occurred during light incubations and varied seasonally from 0.7 mmol CaCO3 m-2 h-1 in winter to 4.2 mmol CaCO3 m-2 h-1 in summer. Mean annual Pmax was 3.2 mmol CaCO3 m-2 h-1. Annual CR was estimated to 407.4 g C m**-2 yr**-1, and GCP, to 240.9 g C m**-2 yr**-1. Maerl communities are, therefore, heterotrophic systems (GCP:CR = 0.6), and are a source of CO2 for surrounding environments. In addition, CO2 released by calcification averaged 39.2 g C m**-2 yr**-1. Maerl community annual carbonate production was estimated to 486.7 g CaCO3 m**-2 yr**-1; they are therefore one of the most important carbonate producers in shallow coastal waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results from sediment trap experiments conducted in the seasonal upwelling area off south Java from November 2000 until July 2003 revealed significant monsoon-, El Niño-Southern Oscillation-, and Indian Ocean Dipole-induced seasonal and interannual variations in flux and shell geochemistry of planktonic foraminifera. Surface net primary production rates together with total and species-specific planktonic foraminiferal flux rates were highest during the SE monsoon-induced coastal upwelling period from July to October, with three species Globigerina bulloides, Neogloboquadrina pachyderma dex., and Globigerinita glutinata contributing to 40% of the total foraminiferal flux. Shell stable oxygen isotopes (d18O) and Mg/Ca data of Globigerinoides ruber sensu stricto (s.s.), G. ruber sensu lato (s.l.), Neogloboquadrina dutertrei, Pulleniatina obliquiloculata, and Globorotalia menardii in the sediment trap time series recorded surface and subsurface conditions. We infer habitats of 0-30 m for G. ruber at the mixed layer depth, 60-80 m (60-90 m) for P. obliquiloculata (N. dutertrei) at the upper thermocline depth, and 90-110 m (100-150 m) for G. menardii in the 355-500 mm (>500 µm) size fraction corresponding to the (lower) thermocline depth in the study area. Shell Mg/Ca ratio of G. ruber (s.l. and s.s.) reveals an exponential relationship with temperature that agrees with published relationships particularly with the Anand et al. (2003) equations. Flux-weighted foraminiferal data in sediment trap are consistent with average values in surface sediment samples off SW Indonesia. This consistency confirms the excellent potential of these proxies for reconstructing past environmental conditions in this part of the ocean realm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Larvae of the Mediterranean pteropod Cavolinia inflexa were maintained at controlled pHT values of 8.1, 7.82 and 7.51, equivalent respectively to pCO2 levels of 380, 857 and 1713 µatm. At pHT 7.82 larvae exhibited malformations and lower shell growth, compared to the control condition. At pHT 7.51 the larvae did not make shells but were viable and showed a normal development. However, smaller shells or no shells will have both ecological (food web) and biogeochemical (export of carbon and carbonate) consequences. These results confirm that 1pteropods, as well as the species dependent upon them as a food resource, will be severely impacted by ocean acidification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mytilus edulis were cultured for 3 months under six different seawater pCO2 levels ranging from 380 to 4000 µatm. Specimen were taken from Kiel Fjord (Western Baltic Sea, Germany) which is a habitat with high and variable seawater pCO2 and related shifts in carbonate system speciation (e.g., low pH and low CaCO3 saturation state). Hemolymph (HL) and extrapallial fluid (EPF) samples were analyzed for pH and total dissolved inorganic carbon (CT) to calculate pCO2 and [HCO3]. A second experiment was conducted for 2 months with three different pCO2 levels (380, 1400 and 4000 µatm). Boron isotopes (delta11B) were investigated by LA-MC-ICP-MS (Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry) in shell portions precipitated during experimental treatment time. Additionally, elemental ratios (B/Ca, Mg/Ca and Sr/Ca) in the EPF of specimen from the second experiment were measured via ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry). Extracellular pH was not significantly different in HL and EPF but systematically lower than ambient water pH. This is due to high extracellular pCO2 values, a prerequisite for metabolic CO2 excretion. No accumulation of extracellular [HCO3] was measured. Elemental ratios (B/Ca, Mg/Ca and Sr/Ca) in the EPF increased slightly with pH which is in accordance with increasing growth and calcification rates at higher seawater pH values. Boron isotope ratios were highly variable between different individuals but also within single shells. This corresponds to a high individual variability in fluid B/Ca ratios and may be due to high boron concentrations in the organic parts of the shell. The mean delta11B value shows no trend with pH but appears to represent internal pH (EPF) rather than ambient water pH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stratigraphic study focuses on the description of lithofacies and geological sections of secondary, tertiary and quaternary formations in different parts of western Sicily. The tectonic analysis derived from field studies is used to trace the history and effects of the Alpine orogeny on the geology of Western Sicily. During his field study the author conducted several chemical element analysis on fossil manganese nodules extracted from Jurassic limestone beds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cutri Formation’s, type location, exposed in the NW of Mallorca, Spain has previously been described by Álvaro et al., (1989) and further interpreted by Abbots (1989) unpublished PhD thesis as a base-of-slope carbonate apron. Incorporating new field and laboratory analysis this paper enhances this interpretation. From this analysis, it can be shown without reasonable doubt that the Cutri Formation was deposited in a carbonate base-of-slope environment on the palaeowindward side of a Mid-Jurassic Tethyan platform. Key evidence such as laterally extensive exposures, abundant deposits of calciturbidtes and debris flows amongst hemipelagic deposits strongly support this interpretation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the first 3D simulation of the last minutes of oxygen shell burning in an 18 solar mass supernova progenitor up to the onset of core collapse. A moving inner boundary is used to accurately model the contraction of the silicon and iron core according to a 1D stellar evolution model with a self-consistent treatment of core deleptonization and nuclear quasi-equilibrium. The simulation covers the full solid angle to allow the emergence of large-scale convective modes. Due to core contraction and the concomitant acceleration of nuclear burning, the convective Mach number increases to ~0.1 at collapse, and an l=2 mode emerges shortly before the end of the simulation. Aside from a growth of the oxygen shell from 0.51 to 0.56 solar masses due to entrainment from the carbon shell, the convective flow is reasonably well described by mixing length theory, and the dominant scales are compatible with estimates from linear stability analysis. We deduce that artificial changes in the physics, such as accelerated core contraction, can have precarious consequences for the state of convection at collapse. We argue that scaling laws for the convective velocities and eddy sizes furnish good estimates for the state of shell convection at collapse and develop a simple analytic theory for the impact of convective seed perturbations on shock revival in the ensuing supernova. We predict a reduction of the critical luminosity for explosion by 12--24% due to seed asphericities for our 3D progenitor model relative to the case without large seed perturbations.