913 resultados para selective electroless plating
Resumo:
In this paper, a new cruciform donor–acceptor molecule 2,2'-((5,5'-(3,7-dicyano-2,6-bis(dihexylamino)benzo[1,2-b:4,5-b']difuran-4,8-diyl)bis(thiophene-5,2-diyl))bis (methanylylidene))dimalononitrile (BDFTM) is reported. The compound exhibits both remarkable solid-state red emission and p-type semiconducting behavior. The dual functions of BDFTM are ascribed to its unique crystal structure, in which there are no intermolecular face-to-face π–π interactions, but the molecules are associated by intermolecular CN…π and H-bonding interactions. Firstly, BDFTM exhibits aggregation-induced emission; that is, in solution, it is almost non-emissive but becomes significantly fluorescent after aggregation. The emission quantum yield and average lifetime are measured to be 0.16 and 2.02 ns, respectively. Crystalline microrods and microplates of BDFTM show typical optical waveguiding behaviors with a rather low optical loss coefficient. Moreover, microplates of BDFTM can function as planar optical microcavities which can confine the emitted photons by the reflection at the crystal edges. Thin films show an air-stable p-type semiconducting property with a hole mobility up to 0.0015 cm2V−1s−1. Notably, an OFET with a thin film of BDFTM is successfully utilized for highly sensitive and selective detection of H2S gas (down to ppb levels).
Resumo:
2-Aminopurine (2AP) is a fluorescent isomer of adenine and has a fluorescence lifetime of ~11 ns in water. It is widely used in biochemical settings as a site-specific fluorescent probe of DNA and RNA structure and base-flipping and -folding. These assays assume that 2AP is intrinsically strongly fluorescent. Here, we show this not to be the case, observing that gas-phase, jet-cooled 2-aminopurine and 9-methyl-2-aminopurine have very short fluorescence lifetimes (156 ps and 210 ps, respectively); they are, to all intents and purposes, non-fluorescent. We find that the lifetime of 2-aminopurine increases dramatically when it is part of a hydrate cluster, 2AP·(H2O)n, where n = 1–3. Not only does it depend on the presence of water molecules, it also depends on the specific hydrogen-bonding site to which they attach and on the number of H2O molecules at that site. We selectively microhydrate 2-aminopurine at its sugar-edge, cis-amino or trans-amino sites and see that its fluorescence lifetime increases by 4, 50 and 95 times (to 14.5 ns), respectively.
Resumo:
In early pregnancy, abortion can be induced by blocking the actions of progesterone receptors (PR). However, the PR antagonist, mifepristone (RU38486), is rather unselective in clinical use because it also cross-reacts with other nuclear receptors. Since the ligand-binding domain of human progesterone receptor (hPR) and androgen receptor (hAR) share 54% identity, we hypothesized that derivatives of dihydrotestosterone (DHT), the cognate ligand for hAR, might also regulate the hPR. Compounds designed and synthesized in our laboratory were investigated for their affinities for hPRB, hAR, glucocorticoid receptor (hGRα) and mineralocorticoid receptor (hMR), using whole cell receptor competitive binding assays. Agonistic and antagonistic activities were characterized by reporter assays. Nuclear translocation was monitored using cherry-hPRB and GFP-hAR chimeric receptors. Cytostatic properties and apoptosis were tested on breast cancer cells (MCF7, T-47D). One compound presented a favorable profile with an apparent neutral hPRB antagonistic function, a selective cherry-hPRB nuclear translocation and a cytostatic effect. 3D models of human PR and AR with this ligand were constructed to investigate the molecular basis of selectivity. Our data suggest that these novel DHT-derivatives provide suitable templates for the development of new selective steroidal hPR antagonists.
Resumo:
BACKGROUND AND AIMS: Selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed for patients with chronic hepatitis C virus (HCV) infection. Research suggests that serotonin promotes the development and growth of hepatocellular carcinoma (HCC). We tested the hypothesis whether exposure to SSRIs is associated with an increased risk of HCC in HCV patients. METHOD: Patients who entered the United States Veterans Affairs (VA) Hepatitis C Clinical Case Registry in 2000 to 2009 were analyzed. During the 8 years of follow-up, 36,192 patients filled at least 1 SSRI prescription. Cases of HCC were identified by diagnosis codes (ICD-9 155.0). Multivariable Cox regression analyses estimated adjusted HCC hazard ratios (HRs) for SSRI-exposed versus SSRI-unexposed subjects and categories of average SSRI doses. RESULTS: The annual incidence of HCC in the VA registry cohort of 109,736 patients was 0.5% and significantly greater in the 8% with cirrhosis at baseline (HR = 5.2; 95% CI, 4.7-5.7). There was no evidence for significant interactions between the effect of SSRI-exposure and cirrhosis. Baseline characteristics of the exposed (n = 36,192) and unexposed (n = 73,544) subjects were similar. The median (interquartile range [IQR]) follow-up period after SSRI-exposure began was 44 (20-74) months with 18 (3-49) months between the first and last prescription. The median average SSRI dose during follow-up expressed as a fraction of initial recommended doses for depression was 0.94 (IQR, 0.5 to 1.3). The risk of HCC was not significantly increased after SSRI exposure (HR = 0.96; 95% CI, 0.87-1.05) or with increasing SSRI doses. CONCLUSIONS: Analysis of a large cohort of HCV patients did not support the hypothesis that SSRIs increase the risk of developing HCC.
Resumo:
Mechanisms underlying motor neuron subtype-selective endoplasmic reticulum (ER) stress and associated axonal pathology in amyotrophic lateral sclerosis (ALS) remain unclear. Here we show that the molecular environment of the ER between motor neuron subtypes is distinct, with characteristic signatures. We identify cochaperone SIL1, mutated in Marinesco-Sjögren syndrome (MSS), as being robustly expressed in disease-resistant slow motor neurons but not in ER stress-prone fast-fatigable motor neurons. In a mouse model of MSS, we demonstrate impaired ER homeostasis in motor neurons in response to loss of SIL1 function. Loss of a single functional Sil1 allele in an ALS mouse model (SOD1-G93A) enhanced ER stress and exacerbated ALS pathology. In SOD1-G93A mice, SIL1 levels were progressively and selectively reduced in vulnerable fast-fatigable motor neurons. Mechanistically, reduction in SIL1 levels was associated with lowered excitability of fast-fatigable motor neurons, further influencing expression of specific ER chaperones. Adeno-associated virus-mediated delivery of SIL1 to familial ALS motor neurons restored ER homeostasis, delayed muscle denervation and prolonged survival.
Resumo:
Purpose: Selective retina therapy (SRT) has shown great promise compared to conventional retinal laser photocoagulation as it avoids collateral damage and selectively targets the retinal pigment epithelium (RPE). Its use, however, is challenging in terms of therapy monitoring and dosage because an immediate tissue reaction is not biomicroscopically discernibel. To overcome these limitations, real-time optical coherence tomography (OCT) might be useful to monitor retinal tissue during laser application. We have thus evaluated a proprietary OCT system for its capability of mapping optical changes introduced by SRT in retinal tissue. Methods: Freshly enucleated porcine eyes, covered in DMEM upon collection were utilized and a total of 175 scans from ex-vivo porcine eyes were analyzed. The porcine eyes were used as an ex-vivo model and results compared to two time-resolved OCT scans, recorded from a patient undergoing SRT treatment (SRT Vario, Medical Laser Center Lübeck). In addition to OCT, fluorescin angiography and fundus photography were performed on the patient and OCT scans were subsequently investigated for optical tissue changes linked to laser application. Results: Biomicroscopically invisible SRT lesions were detectable in OCT by changes in the RPE / Bruch's complex both in vivo and the porcine ex-vivo model. Laser application produced clearly visible optical effects such as hyperreflectivity and tissue distortion in the treated retina. Tissue effects were even discernible in time-resolved OCT imaging when no hyper-reflectivity persisted after treatment. Data from ex-vivo porcine eyes showed similar to identical optical changes while effects visible in OCT appeared to correlate with applied pulse energy, leading to an additional reflective layer when lesions became visible in indirect ophthalmoscopy. Conclusions: Our results support the hypothesis that real-time high-resolution OCT may be a promising modality to obtain additional information about the extent of tissue damage caused by SRT treatment. Data shows that our exvivo porcine model adequately reproduces the effects occurring in-vivo, and thus can be used to further investigate this promising imaging technique.
Resumo:
The 5-HT3 receptor (5-HT3R) is an important ion channel responsible for the transmission of nerve impulses in the CNS and PNS that is activated by the endogenous agonist serotonin (5-hydroxytryptamine, 5-HT). 5-HT3R is the only serotonin receptor belonging to the Cys-loop superfamily of neurotransmitter receptors. Different structural biology approaches can be applied, such as crystallization and x-ray analysis. Nonetheless, characterizing the exact ligand binding site(s) of these dynamic receptors is still challenging. The use of photo-crosslinking probes is an alternative validated approach allowing identification of regions in the protein that are important for the binding of small molecules. We designed our probes based on the core structure of the 5-HT3R antagonist granisetron, a FDA approved drug used for the treatment of chemotherapy-induced nausea and vomiting. We synthesized a small library of photo-crosslinking probes by conjugating diazirines and benzophenones via various linkers to granisetron. We were able to obtain several compounds with diverse linker lengths and different photo-crosslinking moieties that show nanomolar binding affinity for the orthosteric binding site. Furthermore we established a stable h5-HT3R expressing cell line and a purification protocol to yield the receptor in a high purity. Several experiments showed unambiguously that we are able to photo-crosslink our probes with the receptor site-specifically. The functionalised protein was analysed by Western blot and MS-analysis. This yielded the exact covalent modification site, corroborating current ligand binding models derived from mutagenesis and docking studies.
Resumo:
Purpose: Selective retina therapy (SRT) is a novel treatment for retinal pathologies, solely targeting the retinal pigment epithelium (RPE). During SRT, the detection of an immediate tissue reaction is challenging as tissue effects remain limited to intracellular RPE photodisruption. Time-resolved ultra-high axial resolution optical coherence tomography (OCT) is thus evaluated for the monitoring of dynamic optical changes at and around the RPE during SRT. Methods: An experimental OCT system with an ultra-high axial resolution of 1.78 µm was combined with an SRT system and time-resolved OCT M-scans of the target area were recorded from four patients undergoing SRT. OCT scans were analyzed and OCT morphology was correlated with findings in fluorescein angiography, fundus photography and cross-sectional OCT. Results: In cases where the irradiation caused RPE damage proven by fluorescein angiography, the lesions were well discernible in time-resolved OCT images but remained invisible in fundus photography and cross-sectional OCT acquired after treatment. If RPE damage was introduced, all applied SRT pulses led to detectable signal changes in the time-resolved OCT images. The extent of optical signal variation seen in the OCT data appeared to scale with the applied SRT pulse energy. Conclusion: The first clinical results proved that successful SRT irradiation induces detectable changes in the OCT M-scan signal while it remains invisible in conventional ophthalmoscopic imaging. Thus, real-time high-resolution OCT is a promising modality to monitor and analyze tissue effects introduced by selective retina therapy and may be used to guide SRT in an automatic feedback mode.
Resumo:
• Background and Aims The uptake, translocation and redistribution of the heavy metals zinc, manganese, nickel, cobalt and cadmium are relevant for plant nutrition as well as for the quality of harvested plant products. The long-distance transport of these heavy metals within the root system and the release to the shoot in young wheat (Triticum aestivum ‘Arina’) plants were investigated. • Methods After the application of 65Zn, 54Mn, 63Ni, 57Co and 109Cd for 24 h to one seminal root (the other seminal roots being excised) of 54-h-old wheat seedlings, the labelled plants were incubated for several days in hydroponic culture on a medium without radionuclides. • Key Results The content of 65Zn decreased quickly in the labelled part of the root. After the transfer of 65Zn from the roots to the shoot, a further redistribution in the phloem from older to younger leaves was observed. In contrast to 65Zn, 109Cd was released more slowly from the roots to the leaves and was subsequently redistributed in the phloem to the youngest leaves only at trace levels. The content of 63Ni decreased quickly in the labelled part of the root, moving to the newly formed parts of the root system and also accumulating transiently in the expanding leaves. The 54Mn content decreased quickly in the labelled part of the root and increased simultaneously in leaf 1. A strong retention in the labelled part of the root was observed after supplying 57Co. • Conclusions The dynamics of redistribution of 65Zn, 54Mn, 63Ni, 57Co and 109Cd differed considerably. The rapid redistribution of 63Ni from older to younger leaves throughout the experiment indicated a high mobility in the phloem, while 54Mn was mobile only in the xylem and 57Co was retained in the labelled root without being loaded into the xylem.