941 resultados para saturation number
Resumo:
In this paper, based on Einstein relationship between diffusion and random walk, the electrochemical behavior of a system with a limited number of molecules was simulated and explored theoretically. The transition of the current vs time responses from discrete to continuous was clearly obtained as the number of redox molecules increased from 10 to 10(6).
Resumo:
Monte Carlo simulation on the basis of the comblike coarse grained nonpolar/polar (NP) model has been carried out to study the polar group saturation effect on physical gelation of amphiphilic polymer solutions. The effects of polar group saturation due to hydrogen bonding or ion bridging on the sol-gel phase diagram, microstructure of aggregates, and chain conformation of amphiphilic polymer solutions under four different solvent conditions to either the nonpolar backbone or the polar side chain in amphiphilic polymer chains have been investigated. It is found that an increase of polar group saturation results in a monotonically decreased critical concentration of gelation point, which can be qualitatively supported by the dynamic theological measurements on pectin aqueous solutions. Furthermore, various solvent conditions to either the backbone or the side chain have significant impact on both chain conformation and microstructure of aggregates. When the solvent is repulsive to the nonpolar backbone but attractive to the polar side chain, the polymer chains are collapsed, and the gelation follows the mechanism of colloidal packing; at the other solvent conditions, the gelation follows the mechanism of random aggregation.
Resumo:
On the basis of the thermodynamics of Gibbs, the spinodal for the quasibinary system was derived in the framework of the Sanchez-Lacombe lattice fluid theory. All of the spinodals were calculated based on a model polydisperse polymer mixture, where each polymer contains three different molecular weight subcomponents. According to our calculations, the spinodal depends on both weight-average ((M) over bar (w)) and number-average ((M) over bar (n)) molecular weights, whereas that of the z-average molecular weight is invisible. Moreover, the extreme of the spinodal decreases when the polydispersity index (eta = (M) over bar (w)/(M) over bar (n)) of the polymer increases. The effect of polydispersity on the spinodal decreases when the molecular weight gets larger and can be negligible at a certain large molecular weight. It is well-known that the influence of polydispersity on the phase equilibrium (coexisting curve, cloud point curves) is much more pronounced than on the spinodal. The effect of M, on the spinodal is discussed as it results from the infuluence of composition temperatures, molecular weight, and the latter's distribution on free volume. An approximate expression, which is in the assumptions of v* v(1)* = v(2)* and 1/r --> 0 for both of the polymers, was also derived for simplification. It can be used in high molecular weight, although it failed to make visible the effect of number-average molecular weight on the spinodal.
Resumo:
This paper introduces a new method to estimate the diffusion coefficient and transference number of a salt or an electroactive ion in a solution with little or no supporting electrolyte. The above two parameters can be obtained from a single potential step experiment without previous knowledge of either one. It would appear that the method could also be used in the study of ion transport in a high viscosity solvent or a solid electrolyte. (C) 1998 Elsevier Science S.A.
Resumo:
The synergistic extraction of rare earths(III) with binary systems containing HBTMPTP and primary amine N1923 from sulfuric acid medium was observed, The syner gistic extraction factor(R) decreased with increasing atomic number of lanthanides. Through the methods of slope analysis, constant mole and saturation titration, the synergistic extraction stoichiometry was obtained, The thermodynamic function was calculated, The IR spectra of the saturated synergistic extraction completely confirmed the mechanism.
Resumo:
Bottom-simulating reflectors (BSRs) were observed beneath the seafloor in the northern continental margin of the South China Sea (SCS). Acoustic impedance profile was derived by Constrained Sparse Spike Inversion (CSSI) method to provide information on rock properties and to estimate gas hydrate or free gas saturations in the sediments where BSRs are present. In general, gas hydrate-bearing sediments have positive impedance anomalies and free gas-bearing sediments have negative impedance anomalies. Based on well log data and Archie's equation, gas hydrate saturation can be estimated. But in regions where well log data is not available, a quantitative estimate of gas hydrate or free gas saturation is inferred by fitting the theoretical acoustic impedance to sediment impedance obtained by CSSI. Our study suggests that gas hydrate saturation in the Taixinan Basin is about 10 - 20% of the pore space, with the highest value of 50%, and free gas saturation below BSR is about 2 - 3% of the pore space, that can rise to 8 - 10% at a topographic high. The free gas is non-continuous and has low content in the southeastern slope of the Dongsha Islands. Moreover, BSR in the northern continental margin of the SCS is related to the presence of free gas. BSR is strong where free gas occurs.
Resumo:
Attenuations of different types of gas hydrate cementation in fluid-saturated porous solids are discussed. The factors affecting estimation of gas hydrate and free gas saturation are analyzed. It is suggested that porosity of sediment, the P wave velocity model and methods of calculating elastic modulus are key factors in the estimation of gas hydrate and free gas saturations. Attenuation of gas hydrate-bearing sediment is closely related with the cementation types of gas hydrate. Negative anomalies of quality factors indicate that gas hydrate deposits away from grain as part of fluid. Positive anomalies of the quality factors indicate that gas hydrate contacts with solid and changes the elastic modulus of matrix. Low frequency velocity and high frequency velocity models are used to estimate gas hydrate and free gas saturation in the Blake Ridge area according to the well log data of the hole 995 in ODP leg 164. The gas hydrate saturation obtained by low frequency velocity is 10% similar to 20% of the pore space and free gas saturation is 0.5% similar to 1% of the pore space. The gas hydrate saturation obtained by high frequency velocity is 5% similar to 10% of the pore space and free gas saturation is 1% similar to 2% of the pore space.
Resumo:
Based on the ray theory and Longuet-Higgins's linear,model of sea waves, the joint distribution of wave envelope and apparent wave number vector is established. From the joint distribution, we define a new concept, namely the outer wave number spectrum, to describe the outer characteristics of ocean waves. The analytical form of the outer wave number spectrum, the probability distributions of the apparent wave number vector and its components are then derived. The outer wave number spectrum is compared with the inner wave number spectrum for the average status of wind-wave development corresponding to a peakness factor P = 3. Discussions on the similarity and difference between the outer wave number spectrum and inner one are also presented in the paper. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Oil and gas migration is very important for theoretical hydrocarbon geology study and exploration practice, but related research is weak. Physical simulation is a main method to study oil migration. Systematic experiments were done to quantitatively describe the migration patterns, path characters and oil saturation by adjusting the possible dynamic factors respectively. The following conclusions were drawn. 1. Darcy velocity and pore throat diameter were calculated according to seepage cross-sectional area and glass beads arrangement. With such normalized Darcy velocity and pore throat diameter, the date from one and two dimensional experiments can be reasonably drawn in two phase diagrams. It is found that the migration pattern can be identified using only one dimensionless number L which is defined as the ration of capillary number and Bond number. 2. Oil saturated in the pores between glass beads was used as calibration and oil saturation in the path was measured by magnetic resonance imaging. The results show that oil saturation in the center of migration path can reach 100%, is higher than oil saturation in the edge of migration path. 3. Percolation backbone during secondary oil migration was identified experimentally using Hele-Shaw cell. The backbone formed mainly because of the spatial variation of the cluster conductivity caused by oil saturation heterogeneity, main resistant force change, and path shrinkage and snap-off. Percolation backbone improves hydrocarbon migration efficiency and is a favorable factor for reservoir forming. 4. In the three dimensional filling models, the thickness of the secondary migration path is mall. It is only 2.5cm even for the piston pattern. Inclination of the model is the main influencing factor of the secondary path width.
Resumo:
Facing the problems met in studies on predominant hydrocarbon migration pathways, experiments and numerical simulating were done in this thesis work to discuss the migration mechanisms. The aim is to analyze quantitatively the pathway pattern in basin scale and to estimate the hydrocarbon loss on the pathway that offer useful information for confirming the potential hydrocarbon accumulation. Based on our understandings on hydrocarbon migration and the fluid dynamic theory, a series of migration experiments were designed to observe the phenomena where kerosene is used as draining phase driven only by buoyancy force that expulses pore water. These experiments allow to study the formation of migration pathways, the distribution of non-wetting oil along these pathways, and the re-utilizing of previously existing pathways marked by residual traces etc. The types of pattern for migration pathways may be characterized by a phase diagram using two dimensionless numbers: the capillary number and the Bond number. The NMR technique is used to measure the average saturation of residual oil within the pathways. Based our experiment works and percolation concept, a numerical simulation model were proposed and realized. This model is therefore called as BP (Buoyancy Percolation) simulator, since buoyancy is taken as the main driving force in hydrocarbon migration. To make sure that BP model is applicable to simulate the process of oil secondary migration, the experimental phenomena are compared with those simulated with BP model by fractal method, and the result is positive. After then, we use BP simulator to simulate the process of migration of oil in the porous media saturated with water at different scale. And the results seem similar to those cited in literatures. In addition, our software is applied in Paris basin to predict the pathway of hydrocarbon migration happened in the Middle Jurassic reservoirs. It is found that the results obtained with our BP model are generally agree with Hindle (1997) and Bekeles'(1999), but our simulated migration pathway pattern and migration direction seem more reasonable than theirs.
Resumo:
The discovery of the highly productive Renqiu buried hill reservoir in Bohai Bay Basin in 1975 started the high tide of finding buried hill reservoirs in China and their research. As the advance of E&P technologies, the study of buried hill reservoir in China had a qualitative leap. The reservoir description and some other aspects of development have reached or approached to the international leading level. However, some core techniques for reservoir study such as structure & faulting system study, formation prediction and connection study and heterogeneous model's construction could not completely carry out the quantitative or accurate reservoir description, e. g. the areal distribution of porosity, permeability and oil saturation. Especially, the modeling for reservoir simulation is still wandering in the stage of simplicity. The inaccurate understanding of geology could not derive 3D heterogeneous geological model that can reveal the actual underground situation thus could not design practical and feasible oilfield development plan. Therefore, the problems of low oil recovery rate, low recovery factor and poor development effectiveness have not been solved. The poor connection of the reservoir determined that waterflooding could not get good development effect and the production had to depend on the reservoir elastic energy, and this will bring big difficulty for development modification and improvement of oil recovery. This study formed a series of techniques for heterogeneous model research that can be used to construct heterogeneous model consistent with the reservoir geology. Thus the development effectiveness, success ratio of drilling and percent of producing reserves can be enhanced. This study can make the development of buried hill reservoir be of high recovery rate and high effect. The achievements of this study are as follows: 1. Evaluated the resources, summarized the geological characteristics and carried out the reservoir classification of the buried hill reservoirs in Shengli petroliferous area; 2. Established the markers for stratigraphical correlation and formed the correlation method for complex buried hill reservoirs; 3. Analyzed the structural features of the buried hill reservoirs, finished the structure interpretation and study of faulting system using synthetic seismograms, horizontal slices and coherent analysis, and clarified structural development history of the buried hill reservoirs in Shengli petroliferous area; 4. Determined the 3 classes and 7 types of pore space and the main pore space type, the logging response characteristics and the FMI logging identified difference between artificial and natural fractures by the comprehensive usage of core analysis, other lab analyses, conventional logging, FMI logging and CMR logging; 5. Determined the factors controlled the growth of the fractures, vugs and cavities, proposed the main formation prediction method for buried hill reservoir and analyzed their technical principium and applicability, and formed the seismic method and process for buried hill reservoir description; 6. Established the reserve calculation method for buried hill reservoirs, i. e. the reserves of fractures and matrix are calculated separately; the recoverable reserves are calculated by decline method and are classified by the SPE criteria; 7. Studied restraining barriers and the sealing of the faults thus clarified the oil-bearing formations of the buried hill reservoirs, and verified the multiple reservoir forming theory; 8. Formed reasonable procedure of buried hill reservoir study; 9. Formed the 3 D modeling technology for buried hill reservoirs; 10. Studied a number of buried hill blocks on the aspects of reservoir description, reservoir engineering and development plan optimization based on the above research and the profit and social effect are remarkable.
Resumo:
Permian reservoir in Sulige area of Ordos Basin, on which this paper focused, belongs to fluvial-delta lithofacies. The majority formations in this area are complicated channel sand deposit with serious inhomogeneity which makes natural gas exploration be very tough in this area. This inhomogeneity can be found everywhere both in large horizontal area and vertical profile of inner and interbedded formations.This paper studied the inhomogeneity characteristic of Permian formation in sulige area of Ordos Basin according to the logging data.Correlating with core data, a criterion to distinguish different type of reservoirs by using logging data is determined after the study of logging response is done considering the diverse conditions of deposit environments, lithology and reservoir space. The characteristic relationships between the various type formations and logging responses fully and systemically are established.It investigated reservoir parameter calculation methods amply. Combining the conventional and special logging data, basing on the feature of low porosity -permeability formation of sulige area, a set of methods to calculate reservoir parameters was formed including primary porosity, secondary porosity, fracture porosity, permeability and water saturation under the conditions of both low porosity-permeability and inhomogenous reservoirs. One thing should be pay close attention is the parameter M for calculating saturation. It is found that the M in low porosity -permeability formation decreases as the porosity decrease, which is opposite to the law that M increases as the porosity decrease in the formation with intermediate to high porosity and permeability. This view has innovated the traditional theory and offered theory basis for the logging interpretation of low porosity - permeability reservoir. Meanwhile it also improved the Arqi formula theoretically and enhanced the logging interpretation accuracy and rescued a number of formations which has been thought to be hopeless according to the old theory.By using advantage logging interpretation procedure, a territorial synthetic geology evaluation to the inhomogeneous reservoir was completed basing on the single well interpretation. All the reservoir evaluation parameters including sand formation thickness, primary porosity, secondary porosity were calculated and evaluated. The rules of changing and development for sand formation thickness, sand physical properties and secondary porous were found at different formations of upper part of the Member 8 of Shihezi, lower part of the Member 8 of Shihezi, the Member 1 of shanxi and the Member 2 of shanxi individually. Evaluation and Correlation of these five formations were also completed and one conclusion was arrived: upper part of the Member 8 of Shihezi formation has the best performance followed by the lower part of the Member 8 of Shihezi, the Member 1 of shanxi and the Member 2 of shanxi formation.After studied the relationship between reservoir deposition characteristic and the natural gas richness, it is regarded that reservoir inhomogeneity is the key issue of the impaction on the natural gas. Natural gas in Sulige gas field was mainly accumulated in sands of channel bar, distributary channel and debouchure bar. Especially, the quartz sand with rich of secondary porous space has obvious better physical properties than other reservoir and usually can forms the concentration of natural gas.
Resumo:
The catalytic behavior of Mo-based zeolite catalysts with different pore structure and size, particularly with 8 membered ring ( M R), 10 M R, coexisted 10 and 12 M R, and 12 M R, was studied in methane aromatization under the conditions of SV=1500 ml/(g.h), p=0.1 MPa and T = 973 K. It was found that the catalytic performance is correlated with the pore structure of the zeolite supports. The zeolites that possess 10 MR or 10 and 12 MR pore structure with a pore diameter equal to or slightly larger than the dynamic diameter of benzene molecule, such as ZSM-5, ZSM-11, ZRP-1 and MCM-22, are fine supports. Among the tested zeolite supports, MCM-22 exhibits the highest activity and selectivity for benzene. A methane conversion of 10.5% with benzene selectivity of 80% was achieved over Mo/MCM-22 catalyst. The Mo/ERS-7 catalyst with 8 MR (0.45 nm) does not show any activity in methane dehydro-aromatization, while Mo/JQX-1 and Mo/SBA-15 catalysts with 12 MR pore exhibit little activity in the reaction. It can be concluded that the zeolites with 10 MR pore or coexisted 10 and 12 MR, having pore size equal to or slightly larger than the dynamic diameter of benzene molecule, are fine supports for methane activation and aromatization.
Resumo:
No data (2012)