909 resultados para resistance of plant
Resumo:
OBJECTIVE: 5-Aminolevulinic acid based photodynamic therapy (5-ALA-PDT) has revealed promising results in the treatment of inflammatory joint diseases due to the sensitivity of inflamed synovial tissue. For 5-ALA-PDT to be safe and beneficial for intra-articular applications, resistance of chondrocytes is essential to prevent cartilage damage. As no data yet exist, the aim of the present study was to assess in vitro the response of the chondrocytes to 5-ALA-PDT and to compare with osteoblasts and synovial tissue derived cells. METHODS: Bovine articular chondrocytes, osteoblasts, and synovial cells were subjected to 5-ALA-PDT in cell culture. The PpIX accumulation and the function of the cells were assessed for up to 12 days. RESULTS: Bovine chondrocytes showed lower PpIX fluorescence upon incubation with 5-ALA (0.0-2.0 mM) for 4 hours as compared to osteoblasts and synovial cells suggesting a low PpIX accumulation. After incubation with 0.5 mM 5-ALA and application of light at a dose of 20 J/cm2, chondrocytes were functionally not affected (collagen type II and aggrecan mRNA, glycosaminoglycan synthesis) whereas a decrease in the proportion of viable cells was observed in osteoblasts and synovial cells (2+/-2% and 14+/-8%, respectively; chondrocytes 91+/-13%). Chondrocytes showed a 58% reduction of 5-ALA uptake using [3H]5-ALA as compared to osteoblasts and a lower mitochondrial content as assessed by the activity of the mitochondrial marker enzyme citrate synthase (9.2+/- 3.6 mU/mg protein) than osteoblasts (32.6+/-10.5 mU/mg) and synovial cells (60.0+/-10.8 mU/mg). The reduced uptake of 5-ALA and/or the low mitochondrial content, an adaptation to their in vivo environment and the site of PpIX synthesis, presumably explains the lower PpIX content in chondrocytes and their resistance against 5-ALA-PDT. CONCLUSION: 5-ALA-PDT might represent a treatment strategy in inflammatory joint diseases without endangering the cartilage function. However, further in vitro and in vivo experiments are required to confirm this data in the authentic environment of chondrocytes, the articular cartilage.
Resumo:
Fastener grade steels with varying alloy contents and heat treatments were employed to measure changes in resistance to hydrogen assisted cracking. The testing procedure compared notched tension specimens fractured in air to threshold stress values obtained during hydrogen charging, utilizing a rising step load procedure. Bainitic structures improved resistance by 10-20% compared to tempered martensite structures. Dual phase steels with a tempered martensite matrix and 20% ferrite were more susceptible and notch sensitive. High strength, fully pearlitic structures showed an improvement in resistance. Carbon content, per se, had no effect on the resistance of steel to hydrogen assisted cracking. Chromium caused a deleterious effect but all other alloying elements studied did not cause much change in hydrogen assisted cracking susceptibility.
Resumo:
It is known that the electrical resistance of annealed metals is usually smaller than that of metals in their cold worked state. The curve showing the relation between electrical resistance and annealing temperature reaches a minimum; continued annealing at higher temperature produces an increase in the electrical resistance. In the case of alloys it has been noted that a second decrease occurs at higher annealing temperature. The following work corroborates the observance of previous investigations. The electrical resistance of cold worked copper, gold, nickel, and iron decreased with annealing and then increased, the minimum being around 300° C. or 400° C. Monel metal showed a minimum resistance followed by an increase which in turn was followed by a second decrease.
Resumo:
Many investigations have shown that the electrical resistance of soft annealed metals is usually smaller than that of metals in their hard, cold worked state. By annealing cold-worked metals, the electrical resistance decreases to a minimum and then increases upon continued annealing at higher temperatures. The work performed in this investigation upon silver, aluminum, copper, nickel, and soft steel corroborates this idea.
Resumo:
The art of Powder Metallurgy deals with the preparation of metal powders and their utilization. As a more pertinent definition, the following has been suggested: "Powder Metallurgy is the art of producing metal powders and shaped objects from individual, mixed, or alloyed metal powders, with or without the inclusion of non-metallic constituents".
Resumo:
This paper investigates the use of virtual reality (VR) technologies to facilitate the analysis of plant biological data in distinctive steps in the application pipeline. Reconstructed three-dimensional biological models (primary polygonal models) transferred to a virtual environment support scientists' collaborative exploration of biological datasets so that they obtain accurate analysis results and uncover information hidden in the data. Examples of the use of virtual reality in practice are provided and a complementary user study was performed.
Resumo:
In many environments land use intensification is likely to result in a decrease in species richness and in an increase in eutrophication. Although the importance of both factors for higher trophic levels such as insect herbivores is well documented, their impact has rarely been studied in combination. Herbivorous insects have a strong impact on the functioning of ecosystems and it is therefore important to understand how they are affected by eutrophication in high or low diversity environments. We used a grassland biodiversity experiment to investigate the combined effect of fertilization and plant diversity loss on the fitness of the generalist grasshopper Chorthippus parallelus by rearing grasshopper nymphs for four weeks in cages on unfertilized or fertilized (NPK) subplots across a species richness gradient from 1 to 60 plant species. Survival, the number of oothecae, body mass and the number of hatchlings were measured separately for each cage. Plant diversity had no effect on any of the grasshopper fitness measures, neither in unfertilized nor in fertilized plots. NPK-fertilization reduced grasshopper survival but increased body mass of males and reproductive success of the surviving females. Fertilization effects were not mediated by plant community structure, productivity or composition, suggesting that higher food plant quality was one of the main drivers. There was no interaction between plant diversity and fertilization on any of the measures. In conclusion, an increase in eutrophication, in both species-rich and species-poor grasslands, could lead to higher reproductive success and therefore higher abundances of herbivorous insects including insect pests, with fertilization effects dominating plant diversity effects.
Resumo:
Heritable variation in plant phenotypes, and thus potential for evolutionary change, can in principle not only be caused by variation in DNA sequence, but also by underlying epigenetic variation. However, the potential scope of such phenotypic effects and their evolutionary significance are largely unexplored. Here, we conducted a glasshouse experiment in which we tested the response of a large number of epigenetic recombinant inbred lines (epiRILs) of Arabidopsis thaliana – lines that are nearly isogenic but highly variable at the level of DNA methylation – to drought and increased nutrient conditions. We found significant heritable variation among epiRILs both in the means of several ecologically important plant traits and in their plasticities to drought and nutrients. Significant selection gradients, that is, fitness correlations, of several mean traits and plasticities suggest that selection could act on this epigenetically based phenotypic variation. Our study provides evidence that variation in DNA methylation can cause substantial heritable variation of ecologically important plant traits, including root allocation, drought tolerance and nutrient plasticity, and that rapid evolution based on epigenetic variation alone should thus be possible.
Resumo:
Campylobacter coli is a food-borne zoonotic pathogen causing human gastroenteritis worldwide. The organism is a commensal in the intestine of many food production animals including fattening pigs. The role of the pig as a potential reservoir for C. coli affecting human either directly or via poultry has hardly been investigated and genetic characterization of porcine strains is needed to address this question. For this aim multilocus sequence typing (MLST) and flaB typing was applied to 256 C. coli isolates from faeces of fattening pig collected during 2009 at different slaughterhouses in Switzerland. In addition genotypic resistances towards macrolides and quinolones based on point mutations in the 23S rRNA and gyrA genes, respectively, were determined. Of the 67 sequence types (STs) obtained by MLST, 37 were found for the first time. flaB typing revealed 46 different types with 14 of them being novel and was useful to further differentiate strains with an identical ST. Quinolone resistance was detected in 33.6% and macrolide resistance was found in 10.6% of isolates. Comparison with 99 C. coli pig isolates from 2001 revealed a significant decrease in antibiotic resistance towards both groups of antibiotics and there was high overlap between genotypes of 2001 and 2009. Little overlap of porcine genotypes was found with 97 C. coli isolates from poultry collected 2008, however, macrolide resistance was significantly higher in pig isolates. In conclusion, C. coli from Swiss pig are heterogeneous containing many novel STs, findings that could reflect the partitioned Swiss pig production with almost no international breed exchange. The antibiotic resistance echoes the use of corresponding drugs in the Swiss livestock production and indicates the efficacy of restrictive application of antibiotics in order to reduce resistances.
Resumo:
We present an optimized multilocus sequence typing (MLST) scheme with universal primer sets for amplifying and sequencing the seven target genes of Campylobacter jejuni and Campylobacter coli. Typing was expanded by sequence determination of the genes flaA and flaB using optimized primer sets. This approach is compatible with the MLST and flaA schemes used in the PubMLST database and results in an additional typing method using the flaB gene sequence. An identification module based on the 16S rRNA and rpoB genes was included, as well as the genetic determination of macrolide and quinolone resistances based on mutations in the 23S rRNA and gyrA genes. Experimental procedures were simplified by multiplex PCR of the 13 target genes. This comprehensive approach was evaluated with C. jejuni and C. coli isolates collected in Switzerland. MLST of 329 strains resulted in 72 sequence types (STs) among the 186 C. jejuni strains and 39 STs for the 143 C. coli isolates. Fourteen (19%) of the C. jejuni and 20 (51%) of the C. coli STs had not been found previously. In total, 35% of the C. coli strains collected in Switzerland contained mutations conferring antibiotic resistance only to quinolone, 15% contained mutations conferring resistance only to macrolides, and 6% contained mutations conferring resistance to both classes of antibiotics. In C. jejuni, these values were 31% and 0% for quinolone and macrolide resistance, respectively. The rpoB sequence allowed phylogenetic differentiation between C. coli and C. jejuni, which was not possible by 16S rRNA gene analysis. An online Integrated Database Network System (SmartGene, Zug, Switzerland)-based platform for MLST data analysis specific to Campylobacter was implemented. This Web-based platform allowed automated allele and ST designation, as well as epidemiological analysis of data, thus streamlining and facilitating the analysis workflow. Data networking facilitates the exchange of information between collaborating centers. The described approach simplifies and improves the genotyping of Campylobacter, allowing cost- and time-efficient routine monitoring.
Resumo:
Campylobacter jejuni is the most important cause of bacterial gastroenteritis in humans. It is a commensal in many wild and domestic animals, including dogs. Whereas genotypes of human and chicken C. jejuni isolates have been described in some detail, only little information on canine C. jejuni genotypes is available. To gain more information on genotypes of canine C. jejuni and their zoonotic potential, isolates from routine diagnostics of diarrheic dogs as well as isolates of a prevalence study in non-diarrheic dogs were analyzed. Prevalence of thermophilic Campylobacter among non-diarrheic dogs was 6.3% for C. jejuni, 5.9% for Campylobacter upsaliensis and 0.7% for Campylobacter coli. The C. jejuni isolates were genotyped by multi locus sequence typing (MLST) and flaB typing. Resistance to macrolides and quinolones was genetically determined in parallel. Within the 134 genotyped C. jejuni isolates 57 different sequence types (ST) were found. Five STs were previously unrecognized. The most common STs were ST-48 (11.2%), ST-45 (10.5%) and ST-21 (6.0%). Whereas no macrolide resistance was found, 28 isolates (20.9%) were resistant to quinolones. ST-45 was significantly more prevalent in diarrheic than in non-diarrheic dogs. Within the common time frame of isolation 94% of the canine isolates had a ST that was also found in human clinical isolates. In conclusion, prevalence of C. jejuni in Swiss dogs is low but there is a large genetic overlap between dog and human isolates. Given the close contact between human and dogs, the latter should not be ignored as a potential source of human campylobacteriosis.
Resumo:
Biological diversity within species can be an important driver of population and ecosystem functioning. Until now, such within-species diversity effects have been attributed to underlying variation in DNA sequence. However, within-species differences, and thus potentially functional biodiversity, can also be created by epigenetic variation. Here, we show that epigenetic diversity increases the productivity and stability of plant populations. Epigenetically diverse populations of Arabidopsis thaliana produce up to 40% more biomass than epigenetically uniform populations. The positive epigenetic diversity effects are strongest when populations are grown together with competitors and infected with pathogens, and they seem to be partly driven by complementarity among epigenotypes. Our study has two implications: first, we may need to re-evaluate previous within-species diversity studies where some effects could reflect epigenetic diversity; second, we need to incorporate epigenetics into basic ecological research, by quantifying natural epigenetic diversity and testing for its ecological consequences across many different species.
Resumo:
In order to identify optimal therapy for children with bacterial pneumonia, Pakistan's ARI Program, in collaboration with the National Institute of Health (NIH), Islamabad, undertook a national surveillance of antimicrobial resistance in S. pneumoniae and H. influenzae. The project was carried out at selected urban and peripheral sites in 6 different regions of Pakistan, in 1991–92. Nasopharyngeal (NP) specimens and blood cultures were obtained from children with pneumonia diagnosed in the outpatient clinic of participating facilities. Organisms were isolated by local hospital laboratories and sent to NIH for confirmation, serotyping and antimicrobial susceptibility testing. Following were the aims of the study (i) to determine the antimicrobial resistance patterns of S. pneumoniae and H. influenzae in children aged 2–59 months; (ii) to determine the ability of selected laboratories to identify and effectively transport isolates of S. pneumoniae and H. influenzae cultured from nasopharyngeal and blood specimens; (iii) to validate the comparability of resistance patterns for nasopharyngeal and blood isolates of S. pneumoniae and H. influenzae from children with pneumonia; and (iv) to examine the effect of drug resistance and laboratory error on the cost of effectively treating children with ARI. ^ A total of 1293 children with ARI were included in the study: 969 (75%) from urban areas and 324 (25%) from rural parts of the country. Of 1293, there were 786 (61%) male and 507 (39%) female children. The resistance rate of S. pneumoniae to various antibiotics among the urban children with ARI was: TMP/SMX (62%); chloramphenicol (23%); penicillin (5%); tetracycline (16%); and ampicillin/amoxicillin (0%). The rates of resistance of H. influenzae were higher than S. pneumoniae: TMP/SMX (85%); chloramphenicol (62%); penicillin (59%); ampicillin/amoxicillin (46%); and tetracycline (100%). There were similar rates of resistance to each antimicrobial agent among isolates from the rural children. ^ Of a total 614 specimens that were tested for antimicrobial susceptibility, 432 (70.4%) were resistant to TMP/SMX and 93 (15.2%) were resistant to antimicrobial agents other than TMP/SMX viz. ampicillin/amoxicillin, chloramphenicol, penicillin, and tetracycline. ^ The sensitivity and positive predictive value of peripheral laboratories for H. influenzae were 99% and 65%, respectively. Similarly, the sensitivity and positive predictive value of peripheral laboratory tests compared to gold standard i.e. NIH laboratory, for S. pneumoniae were 99% and 54%, respectively. ^ The sensitivity and positive predictive value of nasopharyngeal specimens compared to blood cultures (gold standard), isolated by the peripheral laboratories, for H. influenzae were 88% and 11%, and for S. pneumoniae 92% and 39%, respectively. (Abstract shortened by UMI.)^