971 resultados para refractive index profile


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose the design of a novel ?-shaped fiber laser resonator and apply it to build a long-cavity normaldispersion mode-locked Er-fiber laser which features enhanced functionalities for management and optimization of pulsed lasing regimes. We report the generation of sub-nanosecond pulses with the energy of ~0.5 µJ at a kilohertz-scale repetition rate in an all-fiber system based on the new laser design. A combination of special design solutions in the laser, such as polarization instability compensation in the ultra-long arm of the resonator, intra-cavity spectral selection of radiation with a broadband fiber Bragg grating, and polarization selection by means of a tilted refractive index grating, ensures low amplified spontaneous emission (ASE) noise and high stability of the laser system output parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent results on direct femtosecond inscription of straight low-loss waveguides in borosilicate glass are presented. We also demonstrate lowest ever losses in curvilinear waveguides, which we use as main building blocks for integrated photonics circuits. Low-loss waveguides are of great importance to a variety of applications of integrated optics. We report on recent results of direct femtosecond fabrication of smooth low-loss waveguides in standard optical glass by means of femtosecond chirped-pulse oscillator only (Scientific XL, Femtolasers), operating at the repetition rate of 11 MHz, at the wavelength of 800 nm, with FWHM pulse duration of about 50 fs, and a spectral widths of 30 nm. The pulse energy on target was up to 70 nJ. In transverse inscription geometry, we inscribed waveguides at the depth from 10 to 300 micrometers beneath the surface in the samples of 50 x 50 x 1 mm dimensions made of pure BK7 borosilicate glass. The translation of the samples accomplished by 2D air-bearing stage (Aerotech) with sub-micrometer precision at a speed of up to 100 mm per second (hardware limit). Third direction of translation (Z-, along the inscribing beam or perpendicular to sample plane) allows truly 3D structures to be fabricated. The waveguides were characterized in terms of induced refractive index contrast, their dimensions and cross-sections, mode-field profiles, total insertion losses at both 633 nm and 1550 nm. There was almost no dependence on polarization for the laser inscription. The experimental conditions – depth, laser polarization, pulse energy, translation speed and others, were optimized for minimum insertion losses when coupled to a standard optical fibre SMF-28. We found coincidence of our optimal inscription conditions with recently published by other groups [1, 3] despite significant difference in practically all experimental parameters. Using optimum regime for straight waveguides fabrication, we inscribed a set of curvilinear tracks, which were arranged in a way to ensure the same propagation length (and thus losses) and coupling conditions, while radii of curvature varied from 3 to 10 mm. This allowed us to measure bend-losses – they less than or about 1 dB/cm at R=10 mm radius of curvature. We also demonstrate a possibility to fabricate periodical perturbations of the refractive index in such waveguides with the periods using the same set-up. We demonstrated periods of about 520 nm, which allowed us to fabricate wavelength-selective devices using the same set-up. This diversity as well as very short time for inscription (the optimum translation speed was found to be 40 mm/sec) makes our approach attractive for industrial applications, for example, in next generation high-speed telecom networks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We demonstrate an intrinsic biochemical concentration sensor based on a polymer optical fiber Bragg grating. The water content absorbed by the polymer fiber from a surrounding solution depends on the concentration of the solution because of the osmotic effect. The variation of water content in the fiber causes a change in the fiber dimensions and a variation in refractive index and, therefore, a shift in the Bragg wavelength. Saline solutions with concentration from 0% to 22% were used to demonstrate the sensing principle, resulting in a total wavelength shift of 0.9 nm, allowing high-resolution concentration measurements to be realized.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present experimental results on the performance of a series of coated, D-shaped optical fiber sensors that display high spectral sensitivities to external refractive index. Sensitivity to the chosen index regime and coupling of the fiber core mode to the surface plasmon resonance (SPR) is enhanced by using specific materials as part of a multi-layered coating. We present strong evidence that this effect is enhanced by post ultraviolet radiation of the lamellar coating that results in the formation of a nano-scale surface relief corrugation structure, which generates an index perturbation within the fiber core that in turn enhances the coupling. We have found reasonable agreement when we modeling the fiber device. It was found that the SPR devices operate in air with high coupling efficiency in excess of 40 dB with spectral sensitivities that outperform a typical long period grating, with one device yielding a wavelength spectral sensitivity of 12000 nm/RIU in the important aqueous index regime. The devices generate SPRs over a very large wavelength range, (visible to 2 mu m) by alternating the polarization state of the illuminating light.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An optical fiber is treated as a natural one-dimensional random system where lasing is possible due to a combination of Rayleigh scattering by refractive index inhomogeneities and distributed amplification through the Raman effect. We present such a random fiber laser that is tunable over a broad wavelength range with uniquely flat output power and high efficiency, which outperforms traditional lasers of the same category. Outstanding characteristics defined by deep underlying physics and the simplicity of the scheme make the demonstrated laser a very attractive light source both for fundamental science and practical applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Monoclinic RbPb2Cl5:Dy single crystal was tested for femtosecond laser writing at wavelength of 800nm. Dependence of permanent refractive index change upon input pulse energy was investigated. Non-linear coefficients of multiphoton absorption and self-focusing were measured. Kerr non-linear coefficient was found to be as high as 4.0*10-6 cm2/GW.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present the development of superstructure fiber gratings (SFG) in Ge-doped, silica optical fiber using femtosecond laser inscription. We apply a simple but extremely effective single step process to inscribe low loss, sampled gratings with minor polarization dependence. The method results in a controlled modulated index change with complete suppression of mode coupling associated with the overlapping LPG structure leading to highly symmetric superstructure spectra, with the grating reflection well within the Fourier design limit. The devices are characterized and compared with numerical modeling by solving Maxwell's equations and calculating the back reflection spectrum using the bidirectional beam propagation method (BiBPM). Experimental results validate our numerical analysis, allowing for the estimation of inscription parameters such as the ac index modulation change, and the wavelength, position and relative strength of each significant resonance peak. We also present results on temperature and refractive index measurements showing potential for sensing applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis, I present the studies on fabrication, spectral and polarisation characterisation of fibre gratings with tilted structures at 45º and > 45º (namely 45º- TFGs and ex 45º-TFGs throughout this thesis) and a range of novel applications with these two types of grating. One of the major contributions made in this thesis is the systematic investigation of the grating structures, inscription analysis and spectral and polarisation properties of both types of TFGs. I have inscribed 45º-TFGs in standard telecom and polarisation maintaining (PM) fibres. Two wavelength regions of interest have been explored including 1.55 µm and 1.06 µm. Detailed analysis on fabrication and characterisation of 45º-TFGs on PM fibres have also been carried out for the first time. For ex 45º- TFGs, fabrication has been investigated only on low-cost standard telecom fibre. Furthermore, thermal responses have been measured and analysed showing that both types of TFG have low responsivity to temperature change. More importantly, their refractive index (RI) responses have been characterised to verify the high responsivity to surrounding medium. Based on the unique polarisation properties, both types of TFG have been applied in fibre laser systems to improve the laser performance, which forms another major contribution of the research presented in this thesis. The integration of a 45º-TFG to the Erbium doped fibre laser (EDFL) enables single polarisation laser output at a single wavelength. When combing with ex 45º-TFGs, the EDFL can be transformed to a multi-wavelength switchable laser with single polarisation output. Furthermore, by utilising the polarisation property of the TFGs, a 45º-TFG based mode locked fibre laser is implemented. This laser can produce laser pulses at femtosecond scale and is the first application of TFG in the field of nonlinear optics. Another important contribution from the studies is the development of TFG based passive and active optical sensor systems. An ex 45º-TFG has been successfully developed into a liquid level sensor showing high sensitivity to water based solvents. Strain and twist sensors have been demonstrated via a fibre laser system using both 45°- and ex 45º-TFG with capability identifying not just the twist rate but also the direction. The sensor systems have shown the added advantage of low cost signal demodulation. In addition, load sensor applications have been demonstrated using the 45º-TFG based single polarisation EDFL and the experimental results show good agreement with the theoretical simulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Point-probe optical fiber chem-sensors have been implemented using cladding etched fiber Bragg gratings. The sensors possess refractive index sensing capability that can be utilized to measure chemical concentrations. The Bragg wavelength shift reaches 8 nm when the index of surrounding medium changes from 1.33 to 1.44, giving maximum sensitivity more than 10 times higher than that of previously reported devices. More importantly, the dual-grating configuration of the point-probe sensors offers a temperature reference function, permitting accurate measurement of refractive index encoded chemical concentrations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The humidity sensors constructed from polymer optical fiber Bragg gratings (POFBG) respond to the water content change in the fiber induced by varying environmental condition. The water content change is a diffusion process. Therefore the response time of the POFBG sensor strongly depends on the geometry and size of the fiber. In this work we investigate the use of laser micromachining of D-shaped and slotted structures to improve the response time of polymer fiber grating based humidity sensors. A significant improvement in the response time has been achieved in laser micromachined D-shaped POFBG humidity sensors. The slotted geometry allows water rapid access to the core region but this does not of itself improve response time due to the slow expansion of the bulk of the cladding. We show that by straining the slotted sensor, the expansion component can be removed resulting in the response time being determined only by the more rapid, water induced change in core refractive index. In this way the response time is reduced by a factor of 2.5.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent results on direct femtosecond inscription of straight low-loss waveguides in borosilicate glass are presented. We also demonstrate lowest ever losses in curvilinear waveguides, which we use as main building blocks for integrated photonics circuits. Low-loss waveguides are of great importance to a variety of applications of integrated optics. We report on recent results of direct femtosecond fabrication of smooth low-loss waveguides in standard optical glass by means of femtosecond chirped-pulse oscillator only (Scientific XL, Femtolasers), operating at the repetition rate of 11 MHz, at the wavelength of 800 nm, with FWHM pulse duration of about 50 fs, and a spectral widths of 30 nm. The pulse energy on target was up to 70 nJ. In transverse inscription geometry, we inscribed waveguides at the depth from 10 to 300 micrometers beneath the surface in the samples of 50 x 50 x 1 mm dimensions made of pure BK7 borosilicate glass. The translation of the samples accomplished by 2D air-bearing stage (Aerotech) with sub-micrometer precision at a speed of up to 100 mm per second (hardware limit). Third direction of translation (Z-, along the inscribing beam or perpendicular to sample plane) allows truly 3D structures to be fabricated. The waveguides were characterized in terms of induced refractive index contrast, their dimensions and cross-sections, mode-field profiles, total insertion losses at both 633 nm and 1550 nm. There was almost no dependence on polarization for the laser inscription. The experimental conditions – depth, laser polarization, pulse energy, translation speed and others, were optimized for minimum insertion losses when coupled to a standard optical fibre SMF-28. We found coincidence of our optimal inscription conditions with recently published by other groups [1, 3] despite significant difference in practically all experimental parameters. Using optimum regime for straight waveguides fabrication, we inscribed a set of curvilinear tracks, which were arranged in a way to ensure the same propagation length (and thus losses) and coupling conditions, while radii of curvature varied from 3 to 10 mm. This allowed us to measure bend-losses – they less than or about 1 dB/cm at R=10 mm radius of curvature. We also demonstrate a possibility to fabricate periodical perturbations of the refractive index in such waveguides with the periods using the same set-up. We demonstrated periods of about 520 nm, which allowed us to fabricate wavelength-selective devices using the same set-up. This diversity as well as very short time for inscription (the optimum translation speed was found to be 40 mm/sec) makes our approach attractive for industrial applications, for example, in next generation high-speed telecom networks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently introduced surface nanoscale axial photonics (SNAP) makes it possible to fabricate high-Q-factor microresonators and other photonic microdevices by dramatically small deformation of the optical fiber surface. To become a practical and robust technology, the SNAP platform requires methods enabling reproducible modification of the optical fiber radius at nanoscale. In this Letter, we demonstrate superaccurate fabrication of high-Q-factor microresonators by nanoscale modification of the optical fiber radius and refractive index using CO laser and UV excimer laser beam exposures. The achieved fabrication accuracy is better than 2Å in variation of the effective fiber radius. © 2011 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Point-probe optical fiber chem-sensors have been implemented using cladding etched fiber Bragg gratings. The sensors possess refractive index sensing capability that can be utilized to measure chemical concentrations. The Bragg wavelength shift reaches 8 nm when the index of surrounding medium changes from 1.33 to 1.44, giving maximum sensitivity more than 10 times higher than that of previously reported devices. More importantly, the dual-grating configuration of the point-probe sensors offers a temperature reference function, permitting accurate measurement of refractive index encoded chemical concentrations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We demonstrate a liquid level sensor based on the surrounding medium refractive index (SRI) sensing using of an excessively tilted fibre Bragg grating (ETFBG). The sensor has low thermal cross sensitivity and high SRI responsivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To compare vision-related quality-of-life measures between children wearing orthokeratology (OK) contact lenses and distance single-vision (SV) spectacles. Methods: Subjects 6 to 12 years of age and with myopia of -0.75 to -4.00 diopters and astigmatism less than or equal to 1.00 diopters were prospectively assigned OK contact lens or SV spectacle correction. A pediatric refractive error profile questionnaire was administered at 12- and 24-month intervals to evaluate children's perceptions in terms of overall vision, near vision, far distance vision, symptoms, appearance, satisfaction, activities, academic performance, handling, and peer perceptions. The mean score of all items was calculated as the overall score. Additionally, parents/guardians were asked to rate their child's mode of visual correction and their intention to continue treatment after study completion. Results: Thirty-one children were fitted with OK contact lenses and 30 with SV spectacles. Children wearing OK contact lenses rated overall vision, far distance vision, symptoms, appearance, satisfaction, activities, academic performance, handling, peer perceptions, and the overall score significantly better than children wearing SV spectacles (all P<0.05). Near vision and handling were, respectively, rated better (P<0.001) and similar (P=0.44) for SV spectacles in comparison to OK contact lenses. No significant differences were found between 12 and 24 months for any of the subjective ratings assessed (all P>0.05). Parents/guardians of children wearing OK contact lenses rated visual correction method and intention to continue treatment higher than parents of children wearing SV spectacles (P=0.01). Conclusion: The results indicate that the significant improvement in vision-related quality of life and acceptability with OK contact lenses is an incentive to engage in its use for the control of myopia in children.