632 resultados para recycle polypropylene


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rising of concerns around the scarcity of non-renewable resources has raised curiosity around new frontiers in the polymer science field. Biopolymers is a general term describing different kind of polymers that are linked with the biological world because of either monomer derivation, end of life degradation or both. The current work is aimed at studying one example of both biopolymers types. Polyhydroxibutyrate (P3HB) is a biodegradable microbial-produced polymer which holds massive potentiality as a substitute of polyolefins such as polypropylene. Though, its highly crystalline nature and stereoregularity of structure make it difficult to work with. The project P3HB-Mono take advantage of polarized Raman spectroscopy to see how annealing of chains with different weights influence the crystallinity and molecular structure of the polymer, eventually reflecting on its mechanical properties. The technique employed is also optimal in order to see how mesophase, a particular conformation of chains different from crystalline and amorphous phase, develops in the polymer structure and changes depending on temperature and mechanical stress applied to the fiber. Polycaprolactone (PCL) on the other hand is a biodegradable fossil-fuel polymer which has biocompatibility and bio-resorbability features. As a consequence this material is very appealing for medical industry and can be used for different applications in this field. One interesting option is to produce narrow and long liquid filled fibers for drug delivery inside human body, using a traditional technique in an innovative way. The project BioLiCoF investigates the feasability of producing liquid filled fibers using melt-spinning techniques and will examine the role that melt-spinning parameters and liquids employed as a core solution have on the final fiber. The physical analysis of the fibers is also interpreted and idea on future developments of the trials are suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microplastics (MPs) are highly debated emerging contaminants that are widespread on Earth. Nowadays, assessment of the risk that MPs pose on human health and environment were not developed yet, and standardized analytical methods for their quantification in complex matrices do not exist. Therefore, the formulation of standards which regulating MPs emission in the environment is not possible. The purpose of this study was to develop and apply a method for the analysis of MPs in sewage sludges and water from a wastewater treatment plant (WWTP), due to the relevance of those matrices as important pathway for MPs to enter the environment. Seven polymers were selected, because of their relevance on market production and their frequency of occurrence in such plants: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS), polycarbonate (PC), polyvinyl chloride (PVC), and nylon 6 (PA-6). In the study, a pre-treatment procedure was optimised using Fenton’s reagent and analyses carried out by combining thermochemolysis with Py-GC-MS after sample filtration on quartz (0.3 µm). Polymer quantification was performed with solid polymer mixture in silica and good correlations were obtained with internal calibration. As main results, Fenton's reagent negatively affected the recovery of some polymers (PP, PE, PS, PA-6) and a possible matrix interference was noticed, especially for PET and PVC. The WWTP allowed a good abatement of PS, PE, PP and PVC (on average 90 %) and comparable results were hypothesised for the other polymers. Polymer concentrations is sewage sludges ranged between < 2 μg/gdry and 3.5 mg/ gdry, for PC and PVC, respectively. Possible overestimations for PET and PVC, due to matrix interreferences, were taken into account and discussed.