800 resultados para pulp strength


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forragens com alta umidade e baixa concentração de carboidratos solúveis, como é o caso dos capins tropicais, podem conduzir a condições desfavoráveis para a produção de silagens de qualidade satisfatória. Esse estudo objetivou conhecer o perfil fermentativo e microbiológico de silagens de capim-Marandu [Brachiaria brizantha (Hochst ex. A. Rich) Stapf cv. Marandu], colhido com 58 dias de crescimento, aditivadas com polpa cítrica peletizada (PCP),. Foram utilizados silos experimentais de PVC adaptados com válvula do tipo Bunsen, tendo a silagem atingindo densidade de 900 kg m-3. Os tratamentos foram constituídos por três proporções de PCP (0, 50 e 100 g kg-1 em relação a matéria natural) e sete tempos de abertura após a ensilagem (1, 4, 7, 14, 21, 28 e 56 dias). A presença de PCP aumentou os teores de CHOs em 15 a 20%, reduziu o pH (5,3 para 4,2) e diminuiu as concentrações de N-NH3. Houve crescimento da população de enterobactérias somente durante o primeiro dia de fermentação (média 3 UFC g-1), pequeno desenvolvimento de clostrideos (média 0,5 UFC g-1) e dominância de bactérias homo em relação às heterofermentativas, para os três tratamentos estudados. A adição de polpa cítrica durante a ensilagem do capim-Marandu foi benéfica, podendo ser recomendada desde que haja benefício econômico na sua adoção.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No primeiro ensaio foram utilizados 16 suínos machos castrados da linhagem Topigs, com peso inicial de 80,5±4,7 kg, para a avaliação biológica da polpa cítrica. Por apresentar 18,85% de fibra em detergente neutro e 41,18% de fibra solúvel em detergente neutro, a polpa cítrica mostrou-se como um ingrediente viável a ser utilizado em programas de restrição alimentar qualitativa. No segundo ensaio foram utilizados 36 suínos machos castrados, com peso inicial de 83,7±5,1 kg, recebendo rações com níveis de 0, 10, 20 e 30% de polpa cítrica. Os animais foram abatidos com peso próximo de 130 kg, sendo avaliados quanto ao desempenho e parâmetros séricos. Houve resposta quadrática (P<0,05) para ganho diário de peso e número de dias para atingir o peso de 130 kg, em função dos níveis de polpa cítrica na dieta, sendo observados melhores resultados com níveis de inclusão de 10,79 e 10,97%, respectivamente. Para os parâmetros séricos avaliados, não foi observado efeito (P>0,05) dos níveis de polpa cítrica sobre a uréia e triacilgliceróis, porém houve resposta quadrática (P<0,05) para o colesterol em função dos níveis de polpa cítrica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foi realizado um ensaio utilizando 36 suínos machos castrados, com peso inicial de 83,7±5,1kg, para avaliar o efeito da inclusão de polpa cítrica, 0, 10, 20 e 30%, em um programa de restrição alimentar qualitativa para suínos abatidos aos 130kg de peso, sobre o peso dos órgãos do sistema digestório e sobre características da carcaça e da qualidade da carne. A inclusão de polpa cítrica proporcionou aumento linear (P<0,05) nos pesos do estômago, cólon e fígado, e efeito quadrático (P<0,05) no peso do ceco. Foi observada redução linear (P<0,05) no peso, no rendimento da carcaça e no peso do pernil, porém não houve efeito (P>0,05) sobre o rendimento do pernil. Maior inclusão de polpa cítrica não foi suficiente para reduzir a espessura do toucinho e aumentar a quantidade de carne magra na carcaça, mostrando que a restrição alimentar qualitativa não foi eficiente. Foi observado aumento linear (P<0,05) do pH da carcaça resfriada e linear negativo (P<0,05) sobre as variáveis indicativas de cor da carne em função da inclusão da polpa cítrica nas dietas. A adição de polpa cítrica em programas de restrição alimentar qualitativa não foi eficiente. Por não promover nenhum efeito deletério sobre as características da carne, a polpa cítrica pode ser utilizada como ingrediente alternativo para suínos em terminação.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellulose was extracted from lignocellulosic fibers and nanocrystalline cellulose (NC) prepared by alkali treatment of the fiber, steam explosion of the mercerized fiber, bleaching of the steam exploded fiber and finally acid treatment by 5% oxalic acid followed again by steam explosion. The average length and diameter of the NC were between 200-250 nm and 4-5 nm, respectively, in a monodisperse distribution. Different concentrations of the NC (0.1, 0.5, 1.0, 1.5, 2.0 and 2.5% by weight) were dispersed non-covalently into a completely bio-based thermoplastic polyurethane (TPU) derived entirely from oleic acid. The physical properties of the TPU nanocomposites were assessed by Fourier Transform Infra-Red spectroscopy (FTIR), Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), Dynamic Mechanical Analysis (DMA) and Mechanical Properties Analysis. The nanocomposites demonstrated enhanced stress and elongation at break and improved thermal stability compared to the neat TPU. The best results were obtained with 0.5% of NC in the TPU. The elongation at break of this sample was improved from 178% to 269% and its stress at break from 29.3 to 40.5 MPa. In this and all other samples the glass transition temperature, melting temperature and crystallization behavior were essentially unaffected. This finding suggests a potential method of increasing the strength and the elongation at break of typically brittle and weak lipid-based TPUs without alteration of the other physico-chemical properties of the polymer. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellulose nanocrystals have been evaluated as reinforcement material in polymeric matrices due to their potential to improve the mechanical, optical, and dielectric properties of these matrixes. This work describes how high pressure defibrillation and chemical purification affect the sludge fiber morphology from micro to nanoscale. Microscopy techniques and X-ray diffraction were used to study the structure and properties of the prepared nanofibers and composites. Microscopic studies showed that the used individualization processes lead to a unique morphology of interconnected web-like structure of sludge fibers. The nanofibers are bundles of cellulose fibers having widths (5 to 30 nm) and estimated lengths of several micrometers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particles in Saturn's main rings range in size from dust to kilometer-sized objects. Their size distribution is thought to be a result of competing accretion and fragmentation processes. While growth is naturally limited in tidal environments, frequent collisions among these objects may contribute to both accretion and fragmentation. As ring particles are primarily made of water ice attractive surface forces like adhesion could significantly influence these processes, finally determining the resulting size distribution. Here, we derive analytic expressions for the specific self-energy Q and related specific break-up energy Q(star) of aggregates. These expressions can be used for any aggregate type composed of monomeric constituents. We compare these expressions to numerical experiments where we create aggregates of various types including: regular packings like the face-centered cubic (fcc), Ballistic Particle Cluster Aggregates (BPCA), and modified BPCAs including e.g. different constituent size distributions. We show that accounting for attractive surface forces such as adhesion a simple approach is able to: (a) generally account for the size dependence of the specific break-up energy for fragmentation to occur reported in the literature, namely the division into "strength" and "gravity" regimes and (b) estimate the maximum aggregate size in a collisional ensemble to be on the order of a few tens of meters, consistent with the maximum particle size observed in Saturn's rings of about 10 m. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromium electrodeposition is a technique for the production of functional coatings on engineering components. These coatings are extensively micro-cracked and present high level of hardness, resistance to corrosion and wear and low coefficient of friction. In this paper the shot peening influence on the fatigue strength of aluminum 7050-T7451 alloy chromium electroplated, was investigated.The shot peening process was carried out to create residual stresses using ceramic and glass shots. A hard chromium electroplated coating of 100 mu m thickness was performed on the base material and the shot peened base material surfaces. S-N curves were obtained in axial and bending fatigue tests and compared with the 7050-T7451 aluminum alloy. In order to study the influence of residual stresses on fatigue life, the behavior of compressive residual stress field was measured by an X-ray tensometry.An increase in the axial fatigue strength of 25% and 50% of ceramic and glass shots, respectively, was observed. The lower performance in fatigue life for ceramic-shot peening may be attributed to higher surface damage, as a consequence of the overpeening intensity performed. However, in bending fatigue the behavior was practically equivalent for both processes. Fracture surface analysis by scanning electron microscopy was used to observe crack origin sites from shot peened and chromium electroplated samples. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, with higher demand for improved quality and corrosion resistance, recovered substrates have been extensively used. Consequently residual stresses originated from these coatings reduce the fatigue strength of a component. Due to this negative influence occasioned by corrosion resistance protective coatings, an effective process like shot peening must be considered to improve the fatigue strength. The shot peening treatment pushes the crack sources beneath the surface in most of medium and high cycle cases due to the compressive residual stress field (CRSF) induced. The aim of this study was to evaluate the influence on the fatigue life of anodic films grown on 7050-T7451 aluminium alloy by sulphuric acid anodizing, chromic acid anodizing and hard anodizing. The influence on the rotating and reverse bending fatigue strength of anodic films grown on the aluminium alloy is to degrade the stress life fatigue performance of the base material.A consistent gain in fatigue life in relation to the base material was obtained through the shot peening process in coated specimens, associated to a residual stress field compressive near the surface, useful to avoid fatigue crack nucleation and delay or even stop crack propagation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deposition of wear-resistant hard chromium plating leads to a decrease in the fatigue strength of the base material. Despite the effective protection against wear and corrosion, fatigue life and environmental requirements result in pressure to identify alternatives or to improve conventional chromium electroplating mechanical characteristics. An interesting, environmentally safer and cleaner alternative for the replacement of hard chronic plating is tungsten carbide thermal spray coating, applied by high velocity oxyfuel (HVOF) process.To improve the fatigue strength of aeronautical steel chromium electroplated, shot peening is a successfully used method. Multiple lacer systems of coatings are considered to have larger resistance to crack propagation in comparison with simple layer.The aim of this study was to analyze the effect of nickel underplate on the fatigue strength of hard chromium plated AISI 4340 steel in two mechanical conditions: HRc 39 and HRc 52.Rotating bending fatigue tests results indicate that the clectroless nickel plating underlayer is responsible for the increase in fatigue strength of AISI 4340 steel chromium electroplated. This behavior may be attributed to the largest toughness/ductility and compressive residual stresses which, probably, arrested or delayed the inicrocrack propagation from the hard chromium external layer. The compressive residual stress field (CRSF) induced by the electroplating process was determined by X-ray diffraction method. The evolution of fatigue strength compressive residual stress field CRSF and crack sources are discussed and analyzed by SEM. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most interesting alternatives for replacement of hard chrome plating is tungsten carbide thermal spray coating applied by the high velocity oxy-fuel (HVOF) process which presents a safer, cleaner and less expensive alternative to chromium plating. The objective of this research is to compare the influence of the tungsten carbide-17cobalt (WC- 17Co) coating applied by high velocity oxy fuel (HVOF) process with that of hard-chromium electroplating on the fatigue strength and abrasive wear of AISI 4340 steel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internal residual stresses significantly influence the fatigue strength of coated materials. It is well known that chromium plating is the most used electrodeposited coating for important industrial applications. However, pressure to identify alternatives or to improve the chromium electroplating process have increased in recent years, related to the reduction in fatigue strength of the base material and to environmental requirements. The high efficiency and fluoride free hard chromium electroplating there called accelerated) is an improvement to the conventional process. One environmentally safer and cleaner alternative to hard chromium plating is tungsten carbide thermal spray coating applied by the High Velocity Oxy-Fuel (HVOF) process. To increase the fatigue strength of chromium plated materials, coating thickness and microcracks density are important parameters to be controlled. Techniques as compressive residual stresses induced by shot peening and multilayers, are also used. The aim of this study was to analyse the effects on AISI 4340 steel, in the rotating bending fatigue behaviour, of the: tungsten carbide thermal spray coating applied by HP/HVOF process; chemical nickel underplate, and shot peening process applied before coating deposition, in comparison to hard chromium electroplatings. Rotating bending fatigue test results indicate better performance for the conventional hard chromium plating in relation to the accelerated hard chromium electroplating. Tungsten carbide thermal spray coating and accelerated hard chromium plate over nickel resulted in higher fatigue strength when compared to samples conventional or accelerated hard chromium plated. Shot peening showed to be an excellent alternative to increase fatigue strength of AISI 4340 steel hard chromium electroplated. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that chromium electroplating is related to the reduction in the fatigue strength of base metal. However, chromium results in protection against wear and corrosion combined with chemical resistance and good lubricity. Environmental requirements are an important point to be considered in the search for possible alternatives to hard chrome plating. Aircraft landing gear manufactures are considering WC thermal spray coating applied by the high-velocity oxygen-fuel (HVOF) process an alternative candidate, which shows performance at least comparable to results, obtained for hard chrome plating. The aim of this study is to compare the influence of WC-17Co and WC-10Co-4Cr coatings applied by HVOF process and hard chromium electroplating on the fatigue strength of AISI 4340 steel, with and without shot peening. S-N curves were obtained in axial fatigue test for base material, chromium plated and tungsten carbide coated specimens. Tungsten carbide thermal spray coating results in higher fatigue strength when compared to hard chromium electroplated. Shot peening prior to thermal spraying showed to be an excellent alternative to increase fatigue strength of AISI 4340 steel. Experimental data showed higher axial fatigue and corrosion resistance in salt fog exposure for samples WC-10Co-4Cr HVOF coated when compared with WC-17Co. Fracture surface analysis by scanning electron microscopy (SEM) indicated the existence of a uniform coverage of nearly all substrates. (C) 2004 Elsevier B.V. All rights reserved.