973 resultados para protein tyrosine kinase
Resumo:
Mutations of the Fms-like tyrosine kinase 3 (FLT3) can be detected in a significant number of acute myeloid leukemias (AML). Seventy-five cases of acute myeloid leukemia were evaluated for FLT3-internal tandem duplications (ITD) by polymerase chain reaction. Paraffin-embedded formalin-fixed trephine biopsies of these cases were evaluated for expression of phosphorylated signal transducer and activator of transcription 1 (pSTAT1), pSTAT3, and pSTAT5. Specific expression of pSTAT5 was proven in leukemic blasts in situ by double staining with a blast-specific marker. Expression of pSTAT5 in > or =1% of blasts was highly predictive of FLT3-ITD. Neither expression of pSTAT1 nor pSTAT3 were associated with FLT3 mutations. Altogether we conclude that pSTAT5 expression can precisely be assessed by immunohistochemistry in routinely processed bone marrow trephines, STAT5 is highly likely the preferred second messenger of FLT3-mediated signaling in AML, and expression of pSTAT5 is predictive of FLT3-ITD.
Resumo:
BACKGROUND: Sunitinib (SU) is a multitargeted tyrosine kinase inhibitor with antitumor and antiangiogenic activity. The objective of this trial was to demonstrate antitumor activity of continuous SU treatment in patients with hepatocellular carcinoma (HCC). PATIENTS AND METHODS: Key eligibility criteria included unresectable or metastatic HCC, no prior systemic anticancer treatment, measurable disease, and Child-Pugh class A or mild Child-Pugh class B liver dysfunction. Patients received 37.5 mg SU daily until progression or unacceptable toxicity. The primary endpoint was progression-free survival at 12 weeks (PFS12). RESULTS: Forty-five patients were enrolled. The median age was 63 years; 89% had Child-Pugh class A disease and 47% had distant metastases. PFS12 was rated successful in 15 patients (33%; 95% confidence interval, 20%-47%). Over the whole trial period, one complete response and a 40% rate of stable disease as the best response were achieved. The median PFS duration, disease stabilization duration, time to progression, and overall survival time were 1.5, 2.9, 1.5, and 9.3 months, respectively. Grade 3 and 4 adverse events were infrequent. None of the 33 deaths were considered drug related. CONCLUSION: Continuous SU treatment with 37.5 mg daily is feasible and has moderate activity in patients with advanced HCC and mild to moderately impaired liver dysfunction. Under this trial design (>13 PFS12 successes), the therapy is considered promising. This is the first trial describing the clinical effects of continuous dosing of SU in HCC patients on a schedule that is used in an ongoing, randomized, phase III trial in comparison with the current treatment standard, sorafenib (ClinicalTrials.gov identifier, NCT00699374).
Resumo:
Radiotherapy is a widely used treatment option in cancer. However, recent evidence suggests that doses of ionizing radiation (IR) delivered inside the tumor target volume, during fractionated radiotherapy, can promote tumor invasion and metastasis. Furthermore, the tissues that surround the tumor area are also exposed to low doses of IR that are lower than those delivered inside the tumor mass, because external radiotherapy is delivered to the tumor through multiple radiation beams, in order to prevent damage of organs at risk. The biological effects of these low doses of IR on the healthy tissue surrounding the tumor area, and in particular on the vasculature remain largely to be determined. We found that doses of IR lower or equal to 0.8 Gy enhance endothelial cell migration without impinging on cell proliferation or survival. Moreover, we show that low-dose IR induces a rapid phosphorylation of several endothelial cell proteins, including the Vascular Endothelial Growth Factor (VEGF) Receptor-2 and induces VEGF production in hypoxia mimicking conditions. By activating the VEGF Receptor-2, low-dose IR enhances endothelial cell migration and prevents endothelial cell death promoted by an anti-angiogenic drug, bevacizumab. In addition, we observed that low-dose IR accelerates embryonic angiogenic sprouting during zebrafish development and promotes adult angiogenesis during zebrafish fin regeneration and in the murine Matrigel assay. Using murine experimental models of leukemia and orthotopic breast cancer, we show that low-dose IR promotes tumor growth and metastasis and that these effects were prevented by the administration of a VEGF receptor-tyrosine kinase inhibitor immediately before IR exposure. These findings demonstrate a new mechanism to the understanding of the potential pro-metastatic effect of IR and may provide a new rationale basis to the improvement of current radiotherapy protocols.
Resumo:
Purpose of review Tyrosine kinase inhibitors (TKIs), such as imatinib and sunitinib, have changed the outcome of patients with gastrointestinal stromal tumor (GIST) and prolonged survival by many-fold. Unfortunately, treatment failure and tumor progression seem inevitable over time and constitute an unresolved clinical challenge. This article reviews current efforts to overcome drug resistance and progression. Recent findings The major mechanism of resistance toward imatinib and sunitinib is the development of secondary resistance mutations in the kinase domain of KIT. Recent efforts aim at inhibitors with increased activity against resistance mutations or a broader spectrum of activity. Other strategies include indirect KIT inhibition by modulating KIT chaperone proteins or inhibition of KIT-dependent and independent signaling pathways. Summary dThe rapid improvement of our understanding of GIST biology as well as resistance mechanisms towards imatinib and sunitinib will greatly facilitate the development of novel treatment strategies. This article summarizes the results of recently reported third and fourth-line clinical trials in patients with resistant GIST and reviews data of important proof-of-concept studies.
Resumo:
Anti-self/tumor T cell function can be improved by increasing TCR-peptide MHC (pMHC) affinity within physiological limits, but paradoxically further increases (K(d) < 1 μM) lead to drastic functional declines. Using human CD8(+) T cells engineered with TCRs of incremental affinity for the tumor antigen HLA-A2/NY-ESO-1, we investigated the molecular mechanisms underlying this high-affinity-associated loss of function. As compared with cells expressing TCR affinities generating optimal function (K(d) = 5 to 1 μM), those with supraphysiological affinity (K(d) = 1 μM to 15 nM) showed impaired gene expression, signaling, and surface expression of activatory/costimulatory receptors. Preferential expression of the inhibitory receptor programmed cell death-1 (PD-1) was limited to T cells with the highest TCR affinity, correlating with full functional recovery upon PD-1 ligand 1 (PD-L1) blockade. In contrast, upregulation of the Src homology 2 domain-containing phosphatase 1 (SHP-1/PTPN6) was broad, with gradually enhanced expression in CD8(+) T cells with increasing TCR affinities. Consequently, pharmacological inhibition of SHP-1 with sodium stibogluconate augmented the function of all engineered T cells, and this correlated with the TCR affinity-dependent levels of SHP-1. These data highlight an unexpected and global role of SHP-1 in regulating CD8(+) T cell activation and responsiveness and support the development of therapies inhibiting protein tyrosine phosphatases to enhance T cell-mediated immunity.
Resumo:
We employed two independent approaches to inactivate the angiogenic protein VEGF in newborn mice: inducible, Cre-loxP- mediated gene targeting, or administration of mFlt(1-3)-IgG, a soluble VEGF receptor chimeric protein. Partial inhibition of VEGF achieved by inducible gene targeting resulted in increased mortality, stunted body growth and impaired organ development, most notably of the liver. Administration of mFlt(1-3)-IgG, which achieves a higher degree of VEGF inhibition, resulted in nearly complete growth arrest and lethality. Ultrastructural analysis documented alterations in endothelial and other cell types. Histological and biochemical changes consistent with liver and renal failure were observed. Endothelial cells isolated from the liver of mFlt(1-3)-IgG-treated neonates demonstrated an increased apoptotic index, indicating that VEGF is required not only for proliferation but also for survival of endothelial cells. However, such treatment resulted in less significant alterations as the animal matured, and the dependence on VEGF was eventually lost some time after the fourth postnatal week. Administration of mFlt(1-3)-IgG to juvenile mice failed to induce apoptosis in liver endothelial cells. Thus, VEGF is essential for growth and survival in early postnatal life. However, in the fully developed animal, VEGF is likely to be involved primarily in active angiogenesis processes such as corpus luteum development.
Resumo:
Segons resultats de fases II amb inhibidors tirosina quinasa i el coneixement de les alteracions moleculars de la carcinogènesis tiroïdal, es va dissenyar un estudi retrospectiu de pacients amb càncer de tiroide metastàtic tractats amb sorafenib. S’analitzaren la taxa de respostes, toxicitat, supervivència i la correlació amb els marcadors tumorals de 34 pacients. Segons subtipus histològic, la taxa de respostes va ser 47% en medul•lars, 19% en diferenciats i 33% en anaplàsics. La mitjana de supervivència-lliure-de-progressió va ser 13.5, 10.5 i 4.4 mesos, respectivament. Es va observar correlació significativa entre la reducció dels nivells de marcador tumoral i la resposta. El perfil de toxicitat va ser favorable.
Resumo:
Background: Response evaluation in gastrointestinal stromal tumors is difficult. Computed tomography and size-based assessments have been found inadequate to draw prognostic conclusions in patients treated with tyrosine kinase inhibitors (TKI). Density criteria (CHOI) have recently been shown to better define prognostic subsets of patients evaluated with CT. Still, positron emission tomography (PET) might be better at identifying responders with good outcome early, as shown for first and recently second-line treatment in GIST (Prior et al.; J Clin Oncol 2009). We wanted to evaluate the role of PET in third- and fourth-line TKI treatment of GIST. Methods: We retrospectively reviewed patients with GIST who had received third- or fourth-line treatment with TKI and had undergone PET for response evaluation. Patient needed to have a baseline and at least one subsequent PET. Results of the first "early" PET after treatment start have been used throughout this analysis and EORTC PET Study Group criteria applied. Results: Twelve treatment courses were evaluable, seven with Nilotinib in third- and five with Sorafenib in fourth-line treatment, in 8 patients, median age 60 y (range 36−78 y), who had all failed prior Imatinib and Sunitinib treatment due to disease progession. Baseline and follow-up PET were performed within a median of 34 days (range 9−84 days). Median progression-free survival (PFS) was 262 days in patients responding to PET versus 76 days in patients with stable or progressing disease (p = 0.15). Conclusions: This small series suggests that PET retains its value for outcome prediction in third- and fourth-line TKI treatment of GIST. This could be of particular clinical value in these vulnerable patients with large tumour masses. Early PET may help in stopping ineffective, but toxic therapy and help switching to a more effective therapy. PET should be evaluated further in this patient population.
Resumo:
Purpose: To load embolization particles (DC-Beads, Biocompatibles, UK) with an anti-angiogenic agent (sunitinib) and to characterize the in vitro properties of the Beads-drug association.Materials: DC Beads of 100-300µm were loaded using a specially designed 10mg/ml sunitinib solution. Loading profile was studied by spectrophotometry of the supernatant solution at 430nm at different time points. Release experiment was performed using the USP method 4 (flow-through cell). Spectrophotometric determination at 430nm was used to measure drug concentration in the eluting solution.Results: We were able to load >98% of the drug in the DC-Beads in 2 hours. The maximum concentration was 20mg sunitinib/ml DC Beads. Loaded Beads gradually released 59% of the loaded drug in the eluting solution, by an ionic exchange mechanism,over 6 hours.Conclusions: DC Beads could be loaded with the multi tyrosine kinase inhibitor sunitinib using a specially designed solution. High drug payload can be achieved. The loaded DC Beads released the drug in an ionic eluting solution with an interesting release profile.
Resumo:
P-selectin glycoprotein ligand-1 (PSGL-1) mediates the capture (tethering) of free-flowing leukocytes and subsequent rolling on selectins. PSGL-1 interactions with endothelial selectins activate Src kinases and spleen tyrosine kinase (Syk), leading to α(L)β(2) integrin-dependent leukocyte slow rolling, which promotes leukocyte recruitment into tissues. In addition, but through a distinct pathway, PSGL-1 engagement activates ERK. Because ezrin, radixin and moesin proteins (ERMs) link PSGL-1 to actin cytoskeleton and because they serve as adaptor molecules between PSGL-1 and Syk, we examined the role of PSGL-1 ERM-binding sequence (EBS) on cell capture, rolling, and signaling through Syk and MAPK pathways. We carried out mutational analysis and observed that deletion of EBS severely reduced 32D leukocyte tethering and rolling on L-, P-, and E-selectin and slightly increased rolling velocity. Alanine substitution of Arg-337 and Lys-338 showed that these residues play a key role in supporting leukocyte tethering and rolling on selectins. Importantly, EBS deletion or Arg-337 and Lys-338 mutations abrogated PSGL-1-induced ERK activation, whereas they did not prevent Syk phosphorylation or E-selectin-induced leukocyte slow rolling. These studies demonstrate that PSGL-1 EBS plays a critical role in recruiting leukocytes on selectins and in activating the MAPK pathway, whereas it is dispensable to phosphorylate Syk and to lead to α(L)β(2)-dependent leukocyte slow rolling.
Resumo:
Biomarker analysis is playing an essential role in cancer diagnosis, prognosis, and prediction. Quantitative assessment of immunohistochemical biomarker expression on tumor tissues is of clinical relevance when deciding targeted treatments for cancer patients. Here, we report a microfluidic tissue processor that permits accurate quantification of the expression of biomarkers on tissue sections, enabled by the ultra-rapid and uniform fluidic exchange of the device. An important clinical biomarker for invasive breast cancer is human epidermal growth factor receptor 2 [(HER2), also known as neu], a transmembrane tyrosine kinase that connotes adverse prognostic information for the patients concerned and serves as a target for personalized treatment using the humanized antibody trastuzumab. Unfortunately, when using state-of-the-art methods, the intensity of an immunohistochemical signal is not proportional to the extent of biomarker expression, causing ambiguous outcomes. Using our device, we performed tests on 76 invasive breast carcinoma cases expressing various levels of HER2. We eliminated more than 90% of the ambiguous results (n = 27), correctly assigning cases to the amplification status as assessed by in situ hybridization controls, whereas the concordance for HER2-negative (n = 31) and -positive (n = 18) cases was 100%. Our results demonstrate the clinical potential of microfluidics for accurate biomarker expression analysis. We anticipate our technique will be a diagnostic tool that will provide better and more reliable data, onto which future treatment regimes can be based.
Resumo:
Selectins play a key role regulating leukocyte migration into tissues by mediating leukocyte tethering (capture) and rolling on inflamed endothelium and/or on adherent leukocytes or platelets. During leukocyte rolling, endothelial E- or P-selectin bind to glycoprotein ligands carrying sialyl Lewis χ (sLex) determinant. P-selectin glycoprotein ligand-1 (PSGL-1) is a common ligand for L-, P- and E-selectin, which sequentially cooperates with CD44 and E- selectin ligand-1 (ESL-1) to roll on E-selectin. During rolling on endothelial selectins, PSGL-1 and CD44 signal through Src family kinases and Syk, leading to αι_β2 integrin partial activation and slow rolling on intercellular adhesion molecule-1 (ICAM-1). Leukocyte exposure to chemokines then leads to firm adhesion. Little information is available on ligands that mediate malignant leukocyte rolling on E- selectin. We defined these ligands on U937 monoblasts by immunoadsorbtion and immunoblotting using mAb raised against CD43, CD44, PSGL-1, sLex/CLA determinants and E-selectin/IgM chimera. Immunoblotting and blot rolling assays demonstrated that PSGL-1, CD43, CD44 and a -125 kDa sLex/CLA positive ligand contribute to support E-seiectin- dependent rolling. This -125 kDa ligand is endoglycan, a member of the CD34 family of sialomucins. Endoglycan was frequently detected by flow cytometry on primary leukemia, lymphoma and multiple myeloma ceils (in -50% of cases). Endoglycan, immunopurified from U937 cells, as well as endoglycan/IgG chimera efficiently supported E-selectin dependent rolling. Membrane fractionation on sucrose gradient demonstrated that endoglycan is expressed in lipid rafts. We tested the hypothesis that it signals, like PSGL-1 and CD44, through Src kinases and the MAPK pathway. Indeed, endoglycan engagement induced Syk and ERK phosphorylation in a iipid raft-dependent manner. Syk activation was dependent on Src kinase activity. Downstream of Syk, endoglycan activated PI3K and Akt as well as Bruton's tyrosine kinase and p38 MAPK. Thus, endoglycan is a ligand for endothelial selectins which may contribute to regulate leukemia, lymphoma and multiple myeloma cell trafficking and interactions with bone marrow microenvironment. - Les sélectines contrôlent la migration tissulaire des leucocytes en assurant leur capture et leur roulement sur l'endothélium vasculaire enflammé et/ou sur des plaquettes ou des leucocytes adhérant à la paroi vasculaire. Lors du roulement leucocytaire, les sélectines endothéliales (E- et P-sélectine) se lient à des ligands porteurs du saccharide sialyl Lewis χ (sLex). PSGL-1 est un ligand commun des sélectines qui coopère avec CD44 et ESL-1 pour permettre la capture et le roulement des neutrophiles. Lorsque PSGL-1 et CD44 se lient aux sélectines endothéliales, elles induisent la phosphorylation des kinases Src et de Syk conduisant à l'activation partielle de l'intégrine aLp2 et au ralentissement des leucocytes sur les sélectines et ICAM-1. Les chimiokines induisent ensuite l'adhésion ferme des leucocytes. Les ligands des sélectines qui assurent le roulement, sur la E-sélectine, des cellules issues d'hémopathies malignes sont peu connus. Nous avons caractérisé ces ligands en les purifiant avec des anticorps dirigés contre CD43, CD44, PSGL-1, sLex/CLA et en utilisant la chimère E-sélectine/IgM. Des tests d'adhésion ont montré que PSGL-1, CD43, CD44 et une glycoprotéine de ~125 kDa soutiennent les interactions cellulaires dépendant de la E- sélectine. Le ligand de -125 kDa a été identifié comme étant l'endoglycan. Il a été détecté, par cytométrie de flux, sur les cellules leucémiques, les cellules de lymphomes ou de myélome multiple, dans ~50% des cas analysés. Sa forme membranaire, immunopurifiée, ou recombinante (endoglycan/lgG) soutient les interactions cellulaires dépendant de la E- sélectine. Nous avons montré qu'il réside dans les rafts lipidiques membranaires puis avons testé l'hypothèse que l'endoglycan, comme PSGL-1 et CD44, induit une signalisation via les kinases de type Src et la voie des MAPK. Nous avons pu observer que son engagement induit la phosphorylation de Syk et de ERK pour autant que la structure des rafts soit préservée. En aval de Syk, l'endoglycan active la PI3K, Akt, Btk et la MAPK p38. Ces résultats montrent que l'endoglycan est un ligand des sélectines endothéliales qui pourrait participer au contrôle du trafic et des interactions des cellules leucémiques, de lymphomes ou de myélomes multiples avec leur microenvironnement. - Le sang est un élément clé du fonctionnement de notre corps. La circulation sanguine permet la communication et le transfert de molécules et cellules entre divers organes. Lors d'une inflammation aiguë due à une réaction allergique, une infection ou une blessure, on observe un oedème local accompagné de rougeur, de chaleur et souvent de douleurs. Au sein des tissus enflammés, on observe des globules blancs (leucocytes) et diverses molécules inflammatoires qui attirent les leucocytes dans les tissus lésés (chimiokines). Le sang est composé de globules rouges, de plaquettes et de leucocytes spécialisés dans les défenses immunes. Pour atteindre le site d'inflammation, les leucocytes doivent quitter la circulation sanguine. Ils utilisent pour cela des molécules d'adhésion présentes à leur surface qui se lient à d'autres molécules d'adhésion de la paroi sanguine. Leurs interactions permettent aux leucocytes de rouler à la surface du vaisseau sanguin. Lorsqu'ils roulent au voisinage d'un site d'inflammation, les leucocytes sont exposés à des chimiokines qui induisent leur arrêt et les dirigent dans les tissus enflammés. Ce processus physiologique est aussi impliqué dans des pathologies telles que l'infarctus, l'artériosclérose ou la thrombose. Il peut être détourné à des fins moins louables par des cellules cancéreuses pour permettre leur dissémination (métastatisation). Dans ce travail de thèse, nous avons caractérisé une molécule d'adhésion qui soutient l'adhésion des leucocytes aux sélectines endothéliales: l'endoglycan. Nous avons observé que cette molécule d'adhésion est fréquemment exprimée par les cellules malignes de nombreuses maladies du sang comme les leucémies, les lymphomes et le myélome multiple. Nous avons également pu montrer que l'endoglycan envoie des signaux à l'intérieur des cellules malignes lorsqu'elles se lient aux sélectines endothéliales. Ces signaux pourraient jouer un rôle déterminant dans la régulation des interactions des cellules malignes avec leur microenvironnement. Elles pourraient peut-être aussi favoriser leur survie et leur prolifération.
Resumo:
BACKGROUND: Glioblastoma is a highly vascularised tumour with a high expression of both vascular endothelial growth factor (VEGF) and VEGFR. PTK787/ZK222584 (PTK/ZK, vatalanib), a multiple VEGF receptor inhibitor, blocks the intracellular tyrosine kinase activity of all known VEGF receptors and is therefore suitable for long-term therapy of pathologic tumour neovascularisation. PATIENTS AND METHODS: The study was designed as an open-label, phase I/II study. A classic 3+3 design was selected. PTK/ZK was added to standard concomitant and adjuvant treatment, beginning in the morning of day 1 of radiotherapy (RT), and given continuously until disease progression or toxicity. PTK/ZK doses started from 500 mg with subsequent escalations to 1000 and 1250 mg/d. Adjuvant or maintenance PTK after the end of radiochemotherapy was given at a previously established dose of 750 mg twice daily continuously with TMZ at the standard adjuvant dose. RESULTS: Twenty patients were enrolled. Dose-limiting toxicities at a once daily dose of 1250 mg were grade 3 diarrhoea (n=1), grade 3 ALT increase (n=2), and myelosuppression with grade 4 thrombocytopenia and neutropenia (n=1). The recommended dose of PTK/ZK in combination with radiotherapy and temozolomide (TMZ) is 1000 mg once a day. This treatment is safe and well tolerated. CONCLUSION: In our phase I study once daily administration of up to 1000 mg of PTK/ZK in conjunction with concomitant temozolomide and radiotherapy was feasible and safe. Prolonged administration of this oral agent is manageable. The planned randomised phase II trial was discontinued right at its onset due to industry decision not to further develop this agent.
Resumo:
Trastuzumab and gemcitabine are two active drugs for meta-static breast cancer (MBC) treatment. We conducted a retrospective study of this combination in patients with Her2+ MBC in our hospital.