991 resultados para programming models
Resumo:
Machine ethics is an interdisciplinary field of inquiry that emerges from the need of imbuing autonomous agents with the capacity of moral decision-making. While some approaches provide implementations in Logic Programming (LP) systems, they have not exploited LP-based reasoning features that appear essential for moral reasoning. This PhD thesis aims at investigating further the appropriateness of LP, notably a combination of LP-based reasoning features, including techniques available in LP systems, to machine ethics. Moral facets, as studied in moral philosophy and psychology, that are amenable to computational modeling are identified, and mapped to appropriate LP concepts for representing and reasoning about them. The main contributions of the thesis are twofold. First, novel approaches are proposed for employing tabling in contextual abduction and updating – individually and combined – plus a LP approach of counterfactual reasoning; the latter being implemented on top of the aforementioned combined abduction and updating technique with tabling. They are all important to model various issues of the aforementioned moral facets. Second, a variety of LP-based reasoning features are applied to model the identified moral facets, through moral examples taken off-the-shelf from the morality literature. These applications include: (1) Modeling moral permissibility according to the Doctrines of Double Effect (DDE) and Triple Effect (DTE), demonstrating deontological and utilitarian judgments via integrity constraints (in abduction) and preferences over abductive scenarios; (2) Modeling moral reasoning under uncertainty of actions, via abduction and probabilistic LP; (3) Modeling moral updating (that allows other – possibly overriding – moral rules to be adopted by an agent, on top of those it currently follows) via the integration of tabling in contextual abduction and updating; and (4) Modeling moral permissibility and its justification via counterfactuals, where counterfactuals are used for formulating DDE.
Resumo:
The life of humans and most living beings depend on sensation and perception for the best assessment of the surrounding world. Sensorial organs acquire a variety of stimuli that are interpreted and integrated in our brain for immediate use or stored in memory for later recall. Among the reasoning aspects, a person has to decide what to do with available information. Emotions are classifiers of collected information, assigning a personal meaning to objects, events and individuals, making part of our own identity. Emotions play a decisive role in cognitive processes as reasoning, decision and memory by assigning relevance to collected information. The access to pervasive computing devices, empowered by the ability to sense and perceive the world, provides new forms of acquiring and integrating information. But prior to data assessment on its usefulness, systems must capture and ensure that data is properly managed for diverse possible goals. Portable and wearable devices are now able to gather and store information, from the environment and from our body, using cloud based services and Internet connections. Systems limitations in handling sensorial data, compared with our sensorial capabilities constitute an identified problem. Another problem is the lack of interoperability between humans and devices, as they do not properly understand human’s emotional states and human needs. Addressing those problems is a motivation for the present research work. The mission hereby assumed is to include sensorial and physiological data into a Framework that will be able to manage collected data towards human cognitive functions, supported by a new data model. By learning from selected human functional and behavioural models and reasoning over collected data, the Framework aims at providing evaluation on a person’s emotional state, for empowering human centric applications, along with the capability of storing episodic information on a person’s life with physiologic indicators on emotional states to be used by new generation applications.
Resumo:
Natural disasters are events that cause general and widespread destruction of the built environment and are becoming increasingly recurrent. They are a product of vulnerability and community exposure to natural hazards, generating a multitude of social, economic and cultural issues of which the loss of housing and the subsequent need for shelter is one of its major consequences. Nowadays, numerous factors contribute to increased vulnerability and exposure to natural disasters such as climate change with its impacts felt across the globe and which is currently seen as a worldwide threat to the built environment. The abandonment of disaster-affected areas can also push populations to regions where natural hazards are felt more severely. Although several actors in the post-disaster scenario provide for shelter needs and recovery programs, housing is often inadequate and unable to resist the effects of future natural hazards. Resilient housing is commonly not addressed due to the urgency in sheltering affected populations. However, by neglecting risks of exposure in construction, houses become vulnerable and are likely to be damaged or destroyed in future natural hazard events. That being said it becomes fundamental to include resilience criteria, when it comes to housing, which in turn will allow new houses to better withstand the passage of time and natural disasters, in the safest way possible. This master thesis is intended to provide guiding principles to take towards housing recovery after natural disasters, particularly in the form of flood resilient construction, considering floods are responsible for the largest number of natural disasters. To this purpose, the main structures that house affected populations were identified and analyzed in depth. After assessing the risks and damages that flood events can cause in housing, a methodology was proposed for flood resilient housing models, in which there were identified key criteria that housing should meet. The same methodology is based in the US Federal Emergency Management Agency requirements and recommendations in accordance to specific flood zones. Finally, a case study in Maldives – one of the most vulnerable countries to sea level rise resulting from climate change – has been analyzed in light of housing recovery in a post-disaster induced scenario. This analysis was carried out by using the proposed methodology with the intent of assessing the resilience of the newly built housing to floods in the aftermath of the 2004 Indian Ocean Tsunami.
Resumo:
This research is titled “The Future of Airline Business Models: Which Will Win?” and it is part of the requirements for the award of a Masters in Management from NOVA BSE and another from Luiss Guido Carlo University. The purpose is to elaborate a complete market analysis of the European Air Transportation Industry in order to predict which Airlines, strategies and business models may be successful in the next years. First, an extensive literature review of the business model concept has been done. Then, a detailed overview of the main European Airlines and the strategies that they have been implementing so far has been developed. Finally, the research is illustrated with three case studies
Resumo:
Contém resumo
Resumo:
Mutable state can be useful in certain algorithms, to structure programs, or for efficiency purposes. However, when shared mutable state is used in non-local or nonobvious ways, the interactions that can occur via aliases to that shared memory can be a source of program errors. Undisciplined uses of shared state may unsafely interfere with local reasoning as other aliases may interleave their changes to the shared state in unexpected ways. We propose a novel technique, rely-guarantee protocols, that structures the interactions between aliases and ensures that only safe interference is possible. We present a linear type system outfitted with our novel sharing mechanism that enables controlled interference over shared mutable resources. Each alias is assigned separate, local roles encoded in a protocol abstraction that constrains how an alias can legally use that shared state. By following the spirit of rely-guarantee reasoning, our rely-guarantee protocols ensure that only safe interference can occur but still allow many interesting uses of shared state, such as going beyond invariant and monotonic usages. This thesis describes the three core mechanisms that enable our type-based technique to work: 1) we show how a protocol models an alias’s perspective on how the shared state evolves and constrains that alias’s interactions with the shared state; 2) we show how protocols can be used while enforcing the agreed interference contract; and finally, 3) we show how to check that all local protocols to some shared state can be safely composed to ensure globally safe interference over that shared memory. The interference caused by shared state is rooted at how the uses of di↵erent aliases to that state may be interleaved (perhaps even in non-deterministic ways) at run-time. Therefore, our technique is mostly agnostic as to whether this interference was the result of alias interleaving caused by sequential or concurrent semantics. We show implementations of our technique in both settings, and highlight their di↵erences. Because sharing is “first-class” (and not tied to a module), we show a polymorphic procedure that enables abstract compositions of protocols. Thus, protocols can be specialized or extended without requiring specific knowledge of the interference produce by other protocols to that state. We show that protocol composition can ensure safety even when considering abstracted protocols. We show that this core composition mechanism is sound, decidable (without the need for manual intervention), and provide an algorithm implementation.
Resumo:
Composite materials have a complex behavior, which is difficult to predict under different types of loads. In the course of this dissertation a methodology was developed to predict failure and damage propagation of composite material specimens. This methodology uses finite element numerical models created with Ansys and Matlab softwares. The methodology is able to perform an incremental-iterative analysis, which increases, gradually, the load applied to the specimen. Several structural failure phenomena are considered, such as fiber and/or matrix failure, delamination or shear plasticity. Failure criteria based on element stresses were implemented and a procedure to reduce the stiffness of the failed elements was prepared. The material used in this dissertation consist of a spread tow carbon fabric with a 0°/90° arrangement and the main numerical model analyzed is a 26-plies specimen under compression loads. Numerical results were compared with the results of specimens tested experimentally, whose mechanical properties are unknown, knowing only the geometry of the specimen. The material properties of the numerical model were adjusted in the course of this dissertation, in order to find the lowest difference between the numerical and experimental results with an error lower than 5% (it was performed the numerical model identification based on the experimental results).
Resumo:
Field lab: Business project
Resumo:
We intend to study the algebraic structure of the simple orthogonal models to use them, through binary operations as building blocks in the construction of more complex orthogonal models. We start by presenting some matrix results considering Commutative Jordan Algebras of symmetric matrices, CJAs. Next, we use these results to study the algebraic structure of orthogonal models, obtained by crossing and nesting simpler ones. Then, we study the normal models with OBS, which can also be orthogonal models. We intend to study normal models with OBS (Orthogonal Block Structure), NOBS (Normal Orthogonal Block Structure), obtaining condition for having complete and suffcient statistics, having UMVUE, is unbiased estimators with minimal covariance matrices whatever the variance components. Lastly, see ([Pereira et al. (2014)]), we study the algebraic structure of orthogonal models, mixed models whose variance covariance matrices are all positive semi definite, linear combinations of known orthogonal pairwise orthogonal projection matrices, OPOPM, and whose least square estimators, LSE, of estimable vectors are best linear unbiased estimator, BLUE, whatever the variance components, so they are uniformly BLUE, UBLUE. From the results of the algebraic structure we will get explicit expressions for the LSE of these models.
Resumo:
Both culture coverage and digital journalism are contemporary phenomena that have undergone several transformations within a short period of time. Whenever the media enters a period of uncertainty such as the present one, there is an attempt to innovate in order to seek sustainability, skip the crisis or find a new public. This indicates that there are new trends to be understood and explored, i.e., how are media innovating in a digital environment? Not only does the professional debate about the future of journalism justify the need to explore the issue, but so do the academic approaches to cultural journalism. However, none of the studies so far have considered innovation as a motto or driver and tried to explain how the media are covering culture, achieving sustainability and engaging with the readers in a digital environment. This research examines how European media which specialize in culture or have an important cultural section are innovating in a digital environment. Specifically, we see how these innovation strategies are being taken in relation to the approach to culture and dominant cultural areas, editorial models, the use of digital tools for telling stories, overall brand positioning and extensions, engagement with the public and business models. We conducted a mixed methods study combining case studies of four media projects, which integrates qualitative web features and content analysis, with quantitative web content analysis. Two major general-interest journalistic brands which started as physical newspapers – The Guardian (London, UK) and Público (Lisbon, Portugal) – a magazine specialized in international affairs, culture and design – Monocle (London, UK) – and a native digital media project that was launched by a cultural organization – Notodo, by La Fábrica – were the four case studies chosen. Findings suggest, on one hand, that we are witnessing a paradigm shift in culture coverage in a digital environment, challenging traditional boundaries related to cultural themes and scope, angles, genres, content format and delivery, engagement and business models. Innovation in the four case studies lies especially along the product dimensions (format and content), brand positioning and process (business model and ways to engage with users). On the other hand, there are still perennial values that are crucial to innovation and sustainability, such as commitment to journalism, consistency (to the reader, to brand extensions and to the advertiser), intelligent differentiation and the capability of knowing what innovation means and how it can be applied, since this thesis also confirms that one formula doesn´t suit all. Changing minds, exceeding cultural inertia and optimizing the memory of the websites, looking at them as living, organic bodies, which continuously interact with the readers in many different ways, and not as a closed collection of articles, are still the main challenges for some media.
Resumo:
Neurological disorders are a major concern in modern societies, with increasing prevalence mainly related with the higher life expectancy. Most of the current available therapeutic options can only control and ameliorate the patients’ symptoms, often be-coming refractory over time. Therapeutic breakthroughs and advances have been hampered by the lack of accurate central nervous system (CNS) models. The develop-ment of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of novel therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmentally, anatomically and physiologically) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity). The in vitro recapitulation of CNS phenotypic and functional features requires the implementation of advanced culture strategies that enable to mimic the in vivo struc-tural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. This thesis aimed at the development of novel human 3D in vitro CNS models by integrat-ing agitation-based culture systems and a wide array of characterization tools. Neural differentiation of hNSC as 3D neurospheres was explored in Chapter 2. Here, it was demonstrated that human midbrain-derived neural progenitor cells from fetal origin (hmNPC) can generate complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes. Chapter 3 focused on the development of cellular characterization assays for cell aggregates based on light-sheet fluorescence imaging systems, which resulted in increased spatial resolu-tion both for fixed samples or live imaging. The applicability of the developed human 3D cell model for preclinical research was explored in Chapter 4, evaluating the poten-tial of a viral vector candidate for gene therapy. The efficacy and safety of helper-dependent CAV-2 (hd-CAV-2) for gene delivery in human neurons was evaluated, demonstrating increased neuronal tropism, efficient transgene expression and minimal toxicity. The potential of human 3D in vitro CNS models to mimic brain functions was further addressed in Chapter 5. Exploring the use of 13C-labeled substrates and Nucle-ar Magnetic Resonance (NMR) spectroscopy tools, neural metabolic signatures were evaluated showing lineage-specific metabolic specialization and establishment of neu-ron-astrocytic shuttles upon differentiation. Chapter 6 focused on transferring the knowledge and strategies described in the previous chapters for the implementation of a scalable and robust process for the 3D differentiation of hNSC derived from human induced pluripotent stem cells (hiPSC). Here, software-controlled perfusion stirred-tank bioreactors were used as technological system to sustain cell aggregation and dif-ferentiation. The work developed in this thesis provides practical and versatile new in vitro ap-proaches to model the human brain. Furthermore, the culture strategies described herein can be further extended to other sources of neural phenotypes, including pa-tient-derived hiPSC. The combination of this 3D culture strategy with the implemented characterization methods represents a powerful complementary tool applicable in the drug discovery, toxicology and disease modeling.
Resumo:
This work project is based on the MIES (Map of Innovation and Social Entrepreneurship in Portugal) database and it aims to understand the characteristics of social business models in the context of the portuguese market, by determining whether they follow the proposed characteristics by John Elkington and Pamela Hartigan, and then adding to their matrix. Furthermore, it tries to determine success patterns by comparing a group of successful social ventures with a group of less successful ones, with the objective of increasing the knowledge of social entrepreneurship as it applies to Portugal and provide a framework for future study.
Resumo:
Recaí sob a responsabilidade da Marinha Portuguesa a gestão da Zona Económica Exclusiva de Portugal, assegurando a sua segurança da mesma face a atividades criminosas. Para auxiliar a tarefa, é utilizado o sistema Oversee, utilizado para monitorizar a posição de todas as embarcações presentes na área afeta, permitindo a rápida intervenção da Marinha Portuguesa quando e onde necessário. No entanto, o sistema necessita de transmissões periódicas constantes originadas nas embarcações para operar corretamente – casos as transmissões sejam interrompidas, deliberada ou acidentalmente, o sistema deixa de conseguir localizar embarcações, dificultando a intervenção da Marinha. A fim de colmatar esta falha, é proposto adicionar ao sistema Oversee a capacidade de prever as posições futuras de uma embarcação com base no seu trajeto até à cessação das transmissões. Tendo em conta os grandes volumes de dados gerados pelo sistema (históricos de posições), a área de Inteligência Artificial apresenta uma possível solução para este problema. Atendendo às necessidades de resposta rápida do problema abordado, o algoritmo de Geometric Semantic Genetic Programming baseado em referências de Vanneschi et al. apresenta-se como uma possível solução, tendo já produzido bons resultados em problemas semelhantes. O presente trabalho de tese pretende integrar o algoritmo de Geometric Semantic Genetic Programming desenvolvido com o sistema Oversee, a fim de lhe conceder capacidades preditivas. Adicionalmente, será realizado um processo de análise de desempenho a fim de determinar qual a ideal parametrização do algoritmo. Pretende-se com esta tese fornecer à Marinha Portuguesa uma ferramenta capaz de auxiliar o controlo da Zona Económica Exclusiva Portuguesa, permitindo a correta intervenção da Marinha em casos onde o atual sistema não conseguiria determinar a correta posição da embarcação em questão.
Resumo:
This work presents a model and a heuristic to solve the non-emergency patients transport (NEPT) service issues given the new rules recently established in Portugal. The model follows the same principle of the Team Orienteering Problem by selecting the patients to be included in the routes attending the maximum reduction in costs when compared with individual transportation. This model establishes the best sets of patients to be transported together. The model was implemented in AMPL and a compact formulation was solved using NEOS Server. A heuristic procedure based on iteratively solving problems with one vehicle was presented, and this heuristic provides good results in terms of accuracy and computation time.