959 resultados para predictive habitat mapping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is an integral membrane protein that has only poorly been characterized to date. In particular, a precise membrane topology is thus far elusive. Here, we explored a novel strategy to map the membrane topology of HCV NS4B. METHODS: Selective permeabilization of the plasma membrane, maleimide-polyethyleneglycol (mPEG) labeling of natural or engineered cysteine residues and immunoblot analyses were combined to map the membrane topology of NS4B. Cysteine substitutions were introduced at carefully selected positions within NS4B and their impact on HCV RNA replication and infectious virus production analyzed in cell culture. RESULTS: We established a panel of viable HCV mutants with cysteine substitutions at strategic positions within NS4B. These mutants are infectious and replicate to high levels in cell culture. In parallel, we adapted and optimized the selective permeabilization and mPEG labeling techniques to Huh-7 human hepatocellular carcinoma cells which can support HCV infection and replication. CONCLUSIONS: The newly established experimental tools and techniques should allow us to refine the membrane topology of HCV NS4B in a physiological context. The expected results should enhance our understanding of the functional architecture of the HCV replication complex and may provide new opportunities for antiviral intervention in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose new methods for evaluating predictive densities. The methods includeKolmogorov-Smirnov and Cram?r-von Mises-type tests for the correct specification ofpredictive densities robust to dynamic mis-specification. The novelty is that the testscan detect mis-specification in the predictive densities even if it appears only overa fraction of the sample, due to the presence of instabilities. Our results indicatethat our tests are well sized and have good power in detecting mis-specification inpredictive densities, even when it is time-varying. An application to density forecastsof the Survey of Professional Forecasters demonstrates the usefulness of the proposedmethodologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work extends a previously developed research concerning about the use of local model predictive control in differential driven mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are briefly introduced. In this sense, monocular image data can be used to plan safety trajectories by using goal attraction potential fields

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research extends a previously developed work concerning about the use of local model predictive control in mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The platformused is a differential driven robot with a free rotating wheel. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are also introduced. In this sense, monocular image data provide an occupancy grid where safety trajectories are computed by using goal attraction potential fields

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic environmental monitoring networks enforced by wireless communication technologies provide large and ever increasing volumes of data nowadays. The use of this information in natural hazard research is an important issue. Particularly useful for risk assessment and decision making are the spatial maps of hazard-related parameters produced from point observations and available auxiliary information. The purpose of this article is to present and explore the appropriate tools to process large amounts of available data and produce predictions at fine spatial scales. These are the algorithms of machine learning, which are aimed at non-parametric robust modelling of non-linear dependencies from empirical data. The computational efficiency of the data-driven methods allows producing the prediction maps in real time which makes them superior to physical models for the operational use in risk assessment and mitigation. Particularly, this situation encounters in spatial prediction of climatic variables (topo-climatic mapping). In complex topographies of the mountainous regions, the meteorological processes are highly influenced by the relief. The article shows how these relations, possibly regionalized and non-linear, can be modelled from data using the information from digital elevation models. The particular illustration of the developed methodology concerns the mapping of temperatures (including the situations of Föhn and temperature inversion) given the measurements taken from the Swiss meteorological monitoring network. The range of the methods used in the study includes data-driven feature selection, support vector algorithms and artificial neural networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a control strategy for blood glucose(BG) level regulation in type 1 diabetic patients. To design the controller, model-based predictive control scheme has been applied to a newly developed diabetic patient model. The controller is provided with a feedforward loop to improve meal compensation, a gain-scheduling scheme to account for different BG levels, and an asymmetric cost function to reduce hypoglycemic risk. A simulation environment that has been approved for testing of artificial pancreas control algorithms has been used to test thecontroller. The simulation results show a good controller performance in fasting conditions and meal disturbance rejection, and robustness against model–patient mismatch and errors in mealestimation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUME: Introduction L'objectif de cette étude prospective de cohorte était d'estimer l'efficacité d'un processus de prise en charge standardisé de patients dépendants de l'alcool dans le contexte d'un hôpital universitaire de soins généraux. Ce modèle de prise en charge comprenait une évaluation multidisciplinaire puis des propositions de traitements individualisées et spécifiques (« projet thérapeutique »). Patients et méthode 165 patients alcoolo-dépendants furent recrutés dans différents services de l'hôpital universitaire, y compris la policlinique de médecine. Ils furent dans un premier temps évalués par une équipe multidisciplinaire (médecin interniste, psychiatre, assistant social), puis un projet thérapeutique spécialisé et individualisé leur fut proposé lors d'une rencontre réunissant le patient et l'équipe. Tous les patients éligibles acceptant de participer à l'étude (n=68) furent interrogés au moment de l'inclusion puis 2 et 6 mois plus tard par une psychologue. Des informations standardisées furent recueillies sur les caractéristiques des patients, le processus de prise en charge et l'évolution à 6 mois. Les critères de succès utilisés à 6 mois furent: l'adhérence au traitement proposé et l'abstinence d'alcool. Résultats Lors de l'évaluation à 6 mois, 43% des patients étaient toujours en traitement et 28% étaient abstinents. Les variables prédictrices de succès parmi les caractéristiques des patients étaient un âge de plus de 45 ans, ne pas vivre seul, avoir un travail et être motivé pour un traitement (RAATE-A <18). Pour les variables dépendantes du processus de prise en charge, un sevrage complet de l'alcool lors de la rencontre multidisciplinaire ainsi que la présence de tous les membres de l'équipe à cette réunion étaient des facteurs associés au succès. Conclusion L'efficacité de ce modèle d'intervention pour patients dépendants de l'alcool en hôpital de soins généraux s'est montrée satisfaisante, en particulier pour le critère de succès adhérence au traitement. Des variables associées au succès ou à l'échec à 6 mois ont pu être mises en évidence, permettant d'identifier des populations de patients évoluant différemment. Des stratégies de prise en charge tenant compte de ces éléments pourraient donc être développées, permettant de proposer des traitements plus adaptés ainsi qu'une meilleure rétention des patients alcooliques dans les programmes thérapeutiques. ABSTRACT. To assess the effectiveness of a multidisciplinary evaluation and referral process in a prospective cohort of general hospital patients with alcohol dependence, alcohol-dependent patients were identified in the wards of the general hospital and its primary care center. They were evaluated and then referred to treatment by a multidisciplinary team; those patients who accepted to participate in this cohort study were consecutively included and followed for 6 months. Not included patients were lost for follow-up, whereas all included patients were assessed at time of inclusion, 2 and 6 months later by a research psychologist in order to collect standardized baseline patients' characteristics, process salient features and patients outcomes (defined as treatment adherence and abstinence). Multidisciplinary evaluation and therapeutic referral was feasible and effective, with a success rate of 43% for treatment adherence and 28% for abstinence at 6 months. Among patients' characteristics, predictors of success were an age over 45, not living alone, being employed and being motivated to treatment (RAATE-A score < 18), whereas successful process characteristics included detoxification of the patient at time of referral and a full multidisciplinary referral meeting. This multidisciplinary model of evaluation and referral of alcohol dependent patients of a general hospital had a satisfactory level of effectiveness. Predictors of success and failure allow the identification of subsets of patients for whom new strategies of motivation and treatment referral should be designed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cognitive Performance Scale (CPS) was initially designed to assess cognition in long term care residents. Subsequently, the CPS has also been used among in-home, post-acute, and acute care populations even though CPS' clinimetric performance has not been studied in these settings. This study aimed to determine CPS agreement with the Mini Mental Status Exam (MMSE) and its predictive validity for institutionalization and death in a cohort (N=401) of elderly medical inpatients aged 75 years and over. Medical, physical and mental status were assessed upon admission. The same day, the patient's nurse completed the CPS by interview. Follow-up data were gathered from the central billing system (nursing home stay) and proxies (death). Cognitive impairment was present in 92 (23%) patients according to CPS (score >or= 2). Agreement with MMSE was moderate (kappa 0.52, P<.001). Analysis of discordant results suggested that cognitive impairment was overestimated by the CPS in dependent patients with comorbidities and depressive symptoms, and underestimated in older ones. During follow-up, subjects with abnormal CPS had increased risks of death (adjusted hazard ratio (adjHR) 1.7, 95% CI 1.0-2.8, P=.035) and institutionalization (adjHR 2.7, 95% CI 1.3-5.3, P=.006), independent of demographic, health and functional status. Interestingly, subjects with abnormal CPS were at increased risk of death only if they also had abnormal MMSE. The CPS predicted death and institutionalization during follow-up, but correlated moderately well with the MMSE. Combining CPS and MMSE provided additional predictive information, suggesting that domains other than cognition are assessed by professionals when using the CPS in elderly medical inpatients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed large-scale information on mammal distribution has often been lacking, hindering conservation efforts. We used the information from the 2009 IUCN Red List of Threatened Species as a baseline for developing habitat suitability models for 5027 out of 5330 known terrestrial mammal species, based on their habitat relationships. We focused on the following environmental variables: land cover, elevation and hydrological features. Models were developed at 300 m resolution and limited to within species' known geographical ranges. A subset of the models was validated using points of known species occurrence. We conducted a global, fine-scale analysis of patterns of species richness. The richness of mammal species estimated by the overlap of their suitable habitat is on average one-third less than that estimated by the overlap of their geographical ranges. The highest absolute difference is found in tropical and subtropical regions in South America, Africa and Southeast Asia that are not covered by dense forest. The proportion of suitable habitat within mammal geographical ranges correlates with the IUCN Red List category to which they have been assigned, decreasing monotonically from Least Concern to Endangered. These results demonstrate the importance of fine-resolution distribution data for the development of global conservation strategies for mammals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary: Assessment of the quality of care of people with dementia - Dementia Care Mapping pilot

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While for many years the diagnosis and therapy of colon cancer did not change drastically, recently new drugs (irinotecan and oxaliplatin, used in adjuvant or neo-adjuvant approaches) and even more recently the introduction of therapies targeting the epidermal growth factor receptor (EGFR) through the monoclonal antibodies cetuximab and panitumumab, are revolutionizing the field. The finding that only patients with a tumor with a wild type (non mutated) KRAS gene respond to anti-EGFR therapy has also affected the way pathologists address colorectal cancer. Molecular analysis of the KRAS gene has become almost a routine in a very short period of time. Pathologists will have to be prepared for a new era: from standard morphology based diagnostic procedures to the prediction of response to therapy using molecular tools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to select and use microsatellite markers, to map genomic regions associated with the genetic control of thermosensitive genic male sterility (TGMS) in rice. An F2 population, derived from the cross between fertile and TGMS indica lines, was used to construct a microsatellite-based genetic map of rice. The TGMS phenotype showed a continuous variation in the segregant population. A low level of segregation distortion was detected in the F2 (14.65%), whose cause was found to be zygotic selection. There was no evidence suggesting a cause-effect relationship between zygotic selection and the control of TGMS in this cross. A linkage map comprising 1,213.3 cM was constructed based on the segregation data of the F2 population. Ninety-five out of 116 microsatellite polymorphic markers were assembled into 11 linkage groups, with an average of 12.77 cM between two adjacent marker loci. The phenotypic and genotypic data allowed for the identification of three new quantitative trait loci (QTL) for thermosensitive genic male sterility in indica rice. Two of the QTL were mapped on chromosomes that, so far, have not been associated with the genetic control of the TGMS trait (chromosomes 1 and 12). The third QTL was mapped on chromosome 7, where a TGMS locus (tms2) has recently been mapped. Allelic tests will have to be developed, in order to clarify if the two regions are the same or not.