903 resultados para poly-3-hydroxybutyrate
Resumo:
Sodium sulfonate-functionalized polyether ether ketone)s derived from Bisphenol A with a degree of sulfonation up to 2.0 were synthesized by aromatic nucleophilic polycondensation of various amounts of 5,5-carbonylbis(2-fluorobenzenesulfonate) (1), 4,4'-diflurobenzophenone (2) and Bisphenol A (2). Copolymers showed excellent thermal stability and good mechanical properties. The selectivity of water vapor over nitrogen of membranes prepared from copolymers 3a and 3h was determined to be 3.43 x 10(6) and 1.05 x 10(7), respectively.
Resumo:
A series of high sulfonated poly(ether ether ketone)s were prepared by copolymerization of sodium 5,5 ' -carbonylbis (2-fluorobenzenesulfonate)(2),4,4 ' -difluorobenzophenone (1) and bisphenol A(3) in the presence of potassium carbonate in dimethylsulfoxide. The copolymers were characterized by IR and DSC, The influence of degree of sulfonation on the properties of copolymers, such as component, thermal stability, solubility and filming ability, was studied.
Resumo:
Poly(4 - vinylpyridine)/silica( PVP/SiO2) organic - inorganic nanoscale hybrid was prepared using sol - gel method, in which PVP was used as an organic component and TEOS as a SiO2 precusor, This hybrid was used as CpTiCl3 support. The XPS and IR measurements showed that two kinds of catalytic active site were formed through analyzing the interaction mode between support and CpTiCl3. The results of styrene polymerization showed that syndiotactic was the highest at 50 degreesC. The catalytic activity was 1.09 x 10(6) g PS/ (mol Ti . h) at 70 degreesC when n(Al)/n(Ti) = 1500. GPC results showed a bimodal molecular weight distribution.
Resumo:
Series of thermotropic liquid crystalline poly (aryl ether ketone) s were synthesized by mucleophilic substitution reactions of 4,4'-biphenol and substituted hydroquinone with different difluoromonomers, The relationship between structure and properties of the novel copolymers was investigated. For the copolymers with liquid crystalline properties, their melting transition temperatures show no great change with increase the content of the crystal-disrupting unit. The reason is that the crystal phase is directly transformed from the ordered liquid crystal phase. Side-groups have important effect on mesophase stability, The temperature range of mesophase stability for the chloro-polymers is smaller than those of other series of copolymers (P-phenyl, t-butyl, methoxy, 3-trifluoromethylbenzene). This behavior indicates that the effect of geometric repulsive factor on the thermodynamic stability of the mesophase is much larger than that of the polarizability attractive factor. Different ordered liquid crystal phases are observed in the polymers with different molecular weights. At low molecular weight, highly ordered smectic liquid crystal phases form. With increasing the molecular weight, the ordered degree of the liquid crystals decreases, and only the nematic liquid crystal phase is observed in the polymer with higher molecular weight.
Resumo:
Novel sodium sulfonate-functionalized poly(ether ether ketone)s derived from 4,4'-thiodiphenol with degree of sulfonation up to 2.0 were synthesized by nucleophilic polycondensation of various amount of 5,5 '-carbonylbis(2-fluorobenzenesulfonate) (1) and 4,4'-difluorobenzophenone (2) with 4,4'-thiodipheno (3). Component and structure of the polymers were confirmed by TR, NMR and elemental analysis. Wide angle X-ray diffraction patterns indicated an amorphous structure of the polymers. All the polymers showed excellent thermal stability and poor solubility in water. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A poly(methyloctadecylsilane) oligomer was synthesized by a typical Wurtz coupling reaction. Upon cooling, three transitions were observed at temperatures of 39.9, 37.5 and 33.9 degreesC at a rate of 2.5 degreesC/min in differential scanning calorimetry (DSC). The first transition, with enthalpy change of 0.47 kT/mol and supercooling of 0.2 degreesC, was characteristic of the conformational change in the Si-Si backbone into an all-trans conformation, which was detected by temperature-dependent Fourier transform infrared (FT-FR) spectroscopy. The second and the third transitions with large supercooling were identified as the formation of two-dimensional hexagonal crystal packing and three-dimensional two-chain orthorhombic crystal packing, respectively. The crystal structure was determined by the combination of WAXD and transmission electron microscopy (TEM) experiments. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Novel optically active aromatic poly(amide-imide)s (PAIs) were prepared from newly synthesized 2,2'-bis(3,4-dicarboxybenzamido)-1,1'-binaphyl dianhydride ((+/-)-, (S)-, and (R)-BNDADA). PAIs based on dianhydride monomers with different ee % were investigated with respect to their structures and chiroptical properties. These polymers were highly soluble in polar aprotic solvents such as N,N-dimethylacetamide, N-methyl-2-pyrrolidone, pyridine, etc., and showed high glas s transition temperatures of 287-290 degrees C and 5% weight loss temperatures of 450-465 degrees C in nitrogen. Optically active PAIs exhibited high specific rotations, excellent optical stabilities, and a dependence of optical activities on temperature. Investigations on chiroptical properties indicated that chiral conformation was possessed by optically active PAIs. (C) 1999 John Wiley & Sons, Inc.
Resumo:
The structure determination of the title compound, 2Na(+). C13H6F2O7S22-. HF . 4H(2)O, indicates that intermolecular physical crosslinking through Na+ ions exists in the crystal so that ionic aggregates are formed.
Resumo:
Poly(phenylenesulfidephenylenamine)(PPSA) an alternating copolymer and the hybrid structure of poly(phenylene sulfide)(PPS) and polyaniline(PAn), was synthesized by self-polycondensation of methyl-(4-anilino-phenyl) sulfide with antimony pentachloride and by the acid-induced self-polycondensation of methyl-(4-anilino-phenyl) sulfoxide.
Resumo:
Conductive fibers were obtained by blending polyaniline with poly-omega-aminoundecanoyle in-concentrated H2SO4 Micro-fiber caused by non-compatibility between the two polymers was valuable for improving conductive property of the fibers. Abnormal effect on the crystallinity of polyaniline and poly-omega-aminoundecanoyle upon drawing stress was observed.
Resumo:
Novel optically active aromatic poly(amide-imide)s (PAIs) containing 1,1'-binaphthyl-2,2'-diyl units in the main chain were prepared by polycondensation reactions of newly synthesized dianhydride, 2,2'-bis(3,4-dicarboxylzenzamido)-1,1'-binaphthyl dianhydride[(S)-BN-DADA and (+/-)-BNDADA], with diamines, The properties of the resulted PAIs were fully characterized by a combination of investigations on inherent viscosity, thermal properties(DSC and TGA), specific rotation, CD and UV-Vis absorbance. These PAIs showed good solubilities, thermal properties and optical stabilities. Interesting UV-Vis absorption behavior of films casted from these PAIs was observed and analyzed.
Resumo:
A novel synthetic route to cyclic PEEK precursors is described. These new cyclic oligomers have been prepared from hydroquinone and N-phenyl(4,4'-difluorodiphenyl) ketimine. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis unambiguously confirmed the cyclic nature.
Resumo:
A novel dianhydride, 3,3'-dioxo-[1,1']-spirodiphthalan-5,5',6,6'-tetracarboxlic dianhydride, was synthesized and used as a monomer to prepare polyimides with several diamines via a conventional two-stage procedure. The intermediate poly(amic-acid)s had inherent viscosities of 0.84-1.71 dL/g and could be thermally converted into lightly yellow, transparent, flexible and tough films. Films cast from chemically imidized polyimides were transparent and colorless. The glass transition temperatures (Tg) were > 400 degrees C, and the 5% weight-loss temperatures were > 420 degrees C in N-2 and in air. The solubilities of these polyimides in various solvents were evaluated. The mechanical properties of some polyimides were also tested. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The heterogeneous electron transfer rate constant (k(s)) of dimethylferrocene (DMFc) was estimated using cyclic voltammetric peak potential separations taken typically in a mixed diffusion geometry regime in a polyelectrolyte, and the diffusion coefficient (D) of DMFc was obtained using a steady-state voltammogram. The heterogeneous electron transfer rate constant and diffusion coefficient are both smaller by about 100-fold in the polymeric solvent than in the monomeric solvent. The results are in agreement with the difference of longitudinal dielectric relaxation time (tau(L)) in the two kinds of solvents, poly(ethylene glycol) (PEG) and CH3CN, indicating that k(s) varies inversely with tau(L); k(s), is proportional to D of DMFc. Both D and k(s) of DMFc in PEG containing different supporting electrolytes and at different temperatures have been estimated. These results show that D and k(s) of DMFc increase with increasing temperature in the polyelectrolyte, whereas they vary only slightly with changing the supporting electrolyte.
Resumo:
A successful micronization of water-insoluble poly(epsilon-caprolactone) (PCL) into narrowly distributed nanoparticles stable in water has not only enabled us to study the enzymatic biodegradation of PCL in water at 25 degrees C by a combination of static and dynamic laser light scattering (LLS), but also to shorten the biodegradation time by a factor of more than 10(3) compared with using a thin PCL film, i.e. a 1 week conventional experiment becomes a 4 min one. The time-average scattering intensity decreased linearly. It was interesting to find that the decrease of the scattering intensity was not accompanied by a decrease of the average size of the PCL nanoparticles, indicating that the enzyme, Lipase Pseudomonas (PS), ''eats'' the PCL nanoparticles one-by-one, so that the biodegradation rate is determined mainly by the: enzyme concentration. Moreover, we found that using anionic sodium lauryl sulphate instead of cationic hexadecyltrimethylammonium bromide as surfactant in the micronization can prevent the biodegradation, suggesting that the biodegradation involves two essential steps: the adsorption of slightly negatively charged Lipase PS onto the PCL nanoparticles and the interaction between Lipase PS and PCL. (C) 1999 Elsevier Science Ltd. All rights reserved.