958 resultados para politiofeni water-soluble celle fotovoltaiche organiche SMOSCs
Resumo:
The increasing demand for alternatives to meat food products, which is linked to ethical and environmental reasons, highlights the necessity of using different protein sources. Plant proteins provide a valid option, thanks to the relative low costs, high availability and wide supply sources. The current process used to produce plant concentrates and isolates is the alkaline extraction followed by isoelectric precipitation. However, despite the high purity of the proteins, it presents some drawbacks. Innovative protein extraction processes are emerging, with the aim of reducing the environmental impact and the costs, as well as improving the functional properties. In this study, the traditional wet protein extraction and another simplified wet process were used to obtain protein-rich extracts out of different plants. The sources considered in the project were de-oiled sunflower and canola, chickpea, lentils, and the camelina meal, an emerging oleaginous seed interesting for its high content of omega 3. The extracts obtained from the two processes were then analysed for their capacities to hold water and fat, to form gel and a stable foam. Results highlighted strong differences concerning the protein content, yield and functionalities. The extracts obtained with the alkaline process confirmed the literature data about the four plant sources (sunflower, canola, chickpea and lentils) and allow to obtain a camelina concentrate with a protein content of 63 % and a protein recovery of 41 %. The second easiest process was not effective to obtain a protein enrichment in oleaginous sources, whereas an enrichment of 10 and 15 % was obtained in chickpea and lentils, respectively. The functional properties were also completely different: the easiest process produced protein ingredients completely water-soluble at pH 7, with a discrete foaming capacity compared to the extracts obtained with alkaline process. These characteristics could make these extracts suitable for the plant milk-analogue products.
Resumo:
In this study, a novel hybrid thermochemical-biological refinery integrated with power-to-x approach was developed for obtaining biopolymers (namely polyhydroxyalkanoates, PHA). Within this concept, a trilogy process schema comprising of, (i) thermochemical conversion via integrated pyrolysis-gasification technologies, (ii) anaerobic fermentation of the bioavailable products obtained through either thermochemistry or water-electrolysis for volatile fatty acids (VFA) production, (iii) and VFA-to-PHA bioconversion via an original microaerophilic-aerobic process was developed. During the first stage of proposed biorefinery where lignocellulosic (wooden) biomass was converted into, theoretically fermentable products (i.e. bioavailables) which were defined as syngas and water-soluble fraction of pyrolytic liquid (WS); biochar as a biocatalyst material; and a dense-oil as a liquid fuel. Within integrated pyrolysis - gasification process, biomass was efficiently converted into fermentable intermediates representing up to 66% of biomass chemical energy content in chemical oxygen demand (COD) basis. In the secondary stage, namely anaerobic fermentation for obtaining VFA rich streams, three different downstream process were investigated. First fermentation test was acidogenic bioconversion of WS materials obtained through pyrolysis of biomass within an original biochar-packed bioreactor, it was sustained up to 0.6 gCOD/L-day volumetric productivity (VP). Second, C1 rich syngas materials as the gaseous fraction of pyrolysis-gasification stage, was fermented within a novel char-based biofilm sparger reactor (CBSR), where up to 9.8 gCOD/L-day VP was detected. Third was homoacetogenic bioconversion within the innovative power-to-x pathway for obtaining commodities via renewable energy sources. More specifically, water-electrolysis derived H2 and CO2 as a primary greenhouse gas was successfully bio-utilized by anaerobic mixed cultures into VFA within CBSR system (VP: 18.2 gCOD/L-day). In the last stage of the developed biorefinery schema, VFA is converted into biopolymers within a new continuous microaerophilic-aerobic microplant, where up to 60% of PHA containing sludges was obtained.
Resumo:
Synthetic polymers constitute a wide class of materials which has enhanced the quality of human life, providing comforts and innovations. Anyway, the increasing production and the incorrect waste management, are leading to the occurrence of polymers in the environment, generating concern. To understand the extent of this issue, analytical investigation holds an essential position. Standardised methods have not established yet, and additional studies are required to improve the present knowledge. The main aim of this thesis was to provide comprehensive information about the potential of pyrolysis coupled with gas-chromatography and mass spectrometry (Py-GC-MS) for polymers investigation, from their characterisation to their identification and quantification in complex matrices. Water-soluble (poly(dimethylsiloxanes), PDMS bearing poly(ethylene glycol), PEG, side chains) and water-insoluble polymers (microplastics, MPs, and bioplastics) were studied. The different studies revealed the possibility to identify heterogeneous classes of polymers, fingerprinting the presence of PDMS copolymers and distinguishing chemically different polyurethanes (PURs). The occurrence of secondary reactions in pyrolysis of polymer mixtures was observed as possible drawback. Pyrolysis products indicative of secondary reactions and their reaction mechanisms were identified. Py-GC-MS also revealed its fundamental role for the identification of polymers composing commercial bioplastics items based. The results aided to identify chemicals that have the potential to migrate in sea waters. Investigations of environmental samples demonstrated the capability of Py-GC-MS to provide reliable, reproducible and comparable results about polymers in complex matrices (PEG-PDMS in sewage sludges and PURs and other MPs in road dusts and spider webs). Criticisms were especially found in quantitation, such as the retrieval reference materials, the construction of reliable calibration protocols and the occurrence of bias due to interferences between pyrolysis products. This thesis pursues the greater purpose to develop harmonised and standardised methods for environmental investigations of polymers, that is fundamental to assess the real state of the environment.
Resumo:
The research developed in this thesis focused on the spectroscopic and photochemical characterization of molecular diazene photoswitches, both as individual species and as functional components of mechanically interlocked molecules, molecular-based materials and artificial molecular machines and motors. Among the plethora of photochromes reported so far, azobenzene is the most versatile photoswitch due to its reproducible and well-established photochemical properties. Part I of this thesis work focuses on the characterization of light-responsive supramolecular systems based on azobenzene: a photochemically-driven rotary motor, a light-responsive supramolecular polymeric material and a supramolecular system capable of photoinduced entantiodiscrimination. Despite the wide success of azobenzene photoswitches, the tunability of their photochemical properties as a function of the diversified substitution pattern on its aryl ring presents intrinsic limitations. To overcome this issue, in the last decade heteroaryl azoswitches (i.e., azobenzene having heterocyclic rings in place of one or both phenyl groups) have attracted a great deal of attention. Hence, Part II of this thesis work treats the photochemical characterization of two different families of azoheteroarenes embedding imidazolium and thienyl functionalities in their structures. Their potential implementation in water-soluble artificial molecular machines and light-effected semiconductor materials is also assessed.
Resumo:
Carbon Fiber Reinforced Polymers (CFRPs) are well renowned for their excellent mechanical properties, superior strength-to-weight characteristics, low thermal expansion coefficient, and fatigue resistance over any conventional polymer or metal. Due to the high stiffness of carbon fibers and thermosetting matrix, CFRP laminates may display some drawbacks, limiting their use in specific applications. Indeed, the overall laminate stiffness may lead to structural problems arising from their laminar structure, which makes them susceptible to structural failure by delamination. Moreover, such stiffness given by the constituents makes them poor at damping vibration, making the component more sensitive to noise and leading, at times, to delamination triggering. Nanofibrous mat interleaving is a smart way to increase the interlaminar fracture toughness: the use of thermoplastic polymers, such as poly(ε- caprolactone) (PCL) and polyamides (Nylons), as nonwovens are common and well established. Here, in this PhD thesis, a new method for the production of rubber-rich nanofibrous mats is presented. The use of rubbery nanofibers blended with PCL, widely reported in the literature, was used as matrix tougheners, processing DCB test results by evaluating Acoustic Emissions (AE). Moreover, water-soluble electrospun polyethylene oxide (PEO) nanofibers were proposed as an innovative method for reinforcing layers and hindering delamination in epoxy-based CFRP laminates. A nano-modified CFRP was then aged in water for 1 month and its delamination behaviour compared with the ones of the commercial laminate. A comprehensive study on the use of nanofibers with high rubber content, blended with a crystalline counterpart, as enhancers of the interlaminar properties were then investigated. Finally, PEO, PCL, and Nylon 66 nanofibers, plain or reinforced with Graphene (G), were integrated into epoxy-matrix CFRP to evaluate the effect of polymers and polymers + G on the laminate mechanical properties.
Resumo:
Il seguente lavoro di tesi ha come obiettivo lo studio delle prestazioni energetiche di una pompa di calore elio-assistita, reversibile e multi-sorgente, la quale combina la tecnologia delle pompe di calore aria-acqua con quella dei collettori solari ibridi termo-fotovoltaici. L’impianto oggetto di studio è situato presso il centro di ricerca ENEA Casaccia ed è stato sviluppato con lo scopo di soddisfare la richiesta di riscaldamento/raffrescamento e produzione di acqua calda di un edificio residenziale o commerciale. In questo elaborato si è analizzato il funzionamento invernale della pompa di calore finalizzato alla produzione di acqua calda sanitaria, confrontando due modalità operative differenti con diverse impostazioni di lavoro della frequenza del compressore e della valvola di laminazione. L’elemento distintivo delle due modalità operative è il componente avente la funzione di evaporatore in quanto in una modalità è stata impiegata una batteria alettata con ventilazione forzata, mentre nell’altra un campo di pannelli termo-fotovoltaici. I risultati ottenuti dalle prove sperimentali hanno evidenziato migliori prestazioni della pompa di calore con i collettori ibridi termo-fotovoltaici, in caso di presenza di elevati valori di irraggiamento solare. Elemento di innovazione dell’impianto sperimentale è l’utilizzo del fluido naturale R744 (CO2) come refrigerante il quale viene sfruttato anche per raffreddare le celle fotovoltaiche comportando in questo modo, un doppio effetto utile all’impianto stesso: miglioramento del rendimento elettrico dei collettori solari e contemporaneamente un incremento della temperatura di evaporazione con conseguente beneficio sulle prestazioni della pompa di calore.
Resumo:
Il lavoro proposto si pone l’obiettivo di progettare l’impianto di climatizzazione del Museo Nazionale della Resistenza, sito in Milano, sulla base dei criteri di riduzione delle emissioni climalteranti e valorizzando l’utilizzo delle fonti energetiche rinnovabili presenti nel territorio, nella fattispecie attraverso lo sfruttamento dell’acqua di falda e dell’energia solare. Il primo capitolo è dedicato alla descrizione del processo di dimensionamento effettuato ed ai criteri di progettazione adottati. Lo sfruttamento diretto dell’energia solare avviene attraverso un impianto fotovoltaico integrato alla struttura museale; nel secondo capitolo viene stimata la sua capacità di produzione elettrica annuale. Vengono quindi messi a confronto i risultati ottenuti, calcolati sia su base mensile in relazione alla norma UNI 10349, sia attraverso una simulazione energetica di tipo dinamico condotta su base oraria mediante l’utilizzo del software IES VE. Viene inoltre valutata la capacità della cella fotovoltaica nel convertire la radiazione incidente in energia elettrica ed analizzato il suo comportamento al variare delle condizioni operative. Nel terzo capitolo vengono studiati gli effetti dell’irraggiamento estivo sulle pareti opache del museo, valutando la capacità delle murature di ritardare l’onda di flusso termico. È inoltre effettuata una trattazione analitica per il calcolo dei parametri necessari a determinare il comportamento dinamico dell’involucro. Attraverso la simulazione dinamica è stato possibile stimare le richieste energetiche ed elettriche, estive e invernali, della struttura museale. La soluzione impiantistica proposta per la generazione di acqua calda e refrigerata, fa uso di gruppi polivalenti acqua-acqua con possibilità di condensare o evaporare con acqua di falda. Tale soluzione viene poi analizzata e confrontata con una più versatile, ma meno efficiente, una pompa di calore aria-acqua.
Resumo:
In questo studio è affrontato il progetto di un energy harvester destinato ad alimentare un nodo sensore impiegato per scopi di monitoraggio strutturale. La applicazione in questione è specifica per l'ambito ferroviario, dovendo il sistema essere collocato sul tirante di poligonazione della linea area di contatto. Sono state indagate modalità di conversione dell'energia dalle vibrazioni generate dal contatto fra catenaria e pantografo, studiandone la possibile integrazione con la conversione dell'energia solare tramite celle fotovoltaiche. Sono stati quindi progettati e realizzati due prototipi di energy harvester a vibrazioni, basati su tecnica di conversione rispettivamente elettromagnetica e piezoelettrica. La fase di progettazione è stata affinata tramite simulazioni MATLAB e COMSOL, utilizzando il metodo degli elementi finiti, ed è stato curato il progetto dei circuiti di regolazione della tensione generata dai dispositivi. Sulla base del consumo del nodo sensore misurato ne è stata simulata la alimentazione da parte di un energy harvester solare al variare del periodo dell'anno. I dispostivi realizzati sono stati valutati attraverso varie misurazioni e sono state indagate tra gli sviluppi futuri possibili approcci per il miglioramento della tecnologia realizzata.
Resumo:
It was found that fish livers from the Amazon have considerable amounts of vitamins A, D and E compared with the values of the standartized cod-liver oil. Tambaqui liver oil has high concentration of vitamin A1(retinol) and vitamin A2 (degidroretinol) whereas the liver oils of pirarucu and cuiu-cuiu have preferently the vitamin A2. The contents of the vitamins D and E observed in the liver oils of tambaqui and cuiu-cuiu was extremely high.
Resumo:
The objective of this study was to evaluate the effect of different water contents achieved by Annona emarginata (Schltdl.) H. Rainer seeds during immersion in GA3 solutions, in variation of soluble sugars levels and germination. Seeds with 10% of initial water content were submitted to imbibition in GA3 solutions with concentrations of 0; 250; 500; 750 and 1000 mg L-1 and when they reached the water content of 15%, 20%, 25%, 30% and 35%, the quantification of soluble sugars levels and germination test were performed. Seeds immersed up to they reach 15% of water with GA3 and immersed up to the water acquisition of 20% without GA3, presented higher soluble sugars levels and germination percentage, which were decreased when the seeds reached 30% and 35% of water, independently of the presence of the plant growth regulator. It was conclude that different water contents reached by the seeds in immersion treatments with GA3 affect the soluble sugars levels and germination percentage of Annona emarginata seeds. Thus, in treatments with Annona emarginata, the seeds must remain immersed in water without GA3 up to they reach 20% of water, as higher water contents (35%) reduce the soluble sugars levels and the seed germination percentage.
Resumo:
In the course of the ‘Livestock Revolution’, extension and intensification of, among others, ruminant livestock production systems are current phenomena, with all their positive and negative side effects. Manure, one of the inevitable secondary products of livestock rearing, is a valuable source of plant nutrients and its skillful recycling to the soil-plant interface is essential for soil fertility, nutrient - and especially phosphorus - uses efficiency and the preservation or re-establishment of environmentally sustainable farming systems, for which organic farming systems are exemplarily. Against this background, the PhD research project presented here, which was embedded in the DFG-funded Research Training Group 1397 ‘Regulation of soil organic matter and nutrient turnover in organic agriculture ’ investigated possibilities to manipulate the diets of water buffalo (Bubalus bubalis L.) so as to produce manure of desired quality for organic vegetable production, without affecting the productivity of the animals used. Consisting of two major parts, the first study (chapter 2) tested the effects of diets differing in their ratios of carbon (C) to nitrogen (N) and of structural to non-structural carbohydrates on the quality of buffalo manure under subtropical conditions in Sohar, Sultanate of Oman. To this end, two trials were conducted with twelve water buffalo heifers each, using a full Latin Square design. One control and four tests diets were examined during three subsequent 7 day experimental periods preceded each by 21 days adaptation. Diets consisted of varying proportions of Rhodes grass hay, soybean meal, wheat bran, maize, dates, and a commercial concentrate to achieve a (1) high C/N and high NDF (neutral detergent fibre)/SC (soluble carbohydrate) ratio (HH), (2) low C/N and low NDF/SC ratio (LL); (3) high C/N and low NDF/SC ratio (HL) and (4) low C/N and high NDF/SC (LH) ratio. Effects of these diets, which were offered at 1.45 times maintenance requirements of metabolizable energy, and of individual diet characteristics, respectively, on the amount and quality of faeces excreted were determined and statistically analysed. The faeces produced from diets HH and LL were further tested in a companion PhD study (Mr. K. Siegfried) concerning their nutrient release in field experiments with radish and cabbage. The second study (chapter 3) focused on the effects of the above-described experimental diets on the rate of passage of feed particles through the gastrointestinal tract of four randomly chosen animals per treatment. To this end, an oral pulse dose of 683 mg fibre particles per kg live weight marked with Ytterbium (Yb; 14.5 mg Yb g-1 organic matter) was dosed at the start of the 7 day experimental period which followed 21 days of adaptation. During the first two days a sample for Yb determination was kept from each faecal excretion, during days 3 – 7 faecal samples were kept from the first morning and the first evening defecation only. Particle passage was modelled using a one-compartment age-dependent Gamma-2 model. In both studies individual feed intake and faecal excretion were quantified throughout the experimental periods and representative samples of feeds and faeces were subjected to proximate analysis following standard protocols. In the first study the organic matter (OM) intake and excretion of LL and LH buffaloes were significantly lower than of HH and HL animals, respectively. Digestibility of N was highest in LH (88%) and lowest in HH (74%). While NDF digestibility was also highest in LH (85%) it was lowest in LL (78%). Faecal N concentration was positively correlated (P≤0.001) with N intake, and was significantly higher in faeces excreted by LL than by HH animals. Concentrations of fibre and starch in faecal OM were positively affected by the respective dietary concentrations, with NDF being highest in HH (77%) and lowest in LL (63%). The faecal C/N ratio was positively related (P≤0.001) to NDF intake; C/N ratios were 12 and 7 for HH and LL (P≤0.001), while values for HL and LH were 11.5 and 10.6 (P>0.05). The results from the second study showed that dietary N concentration was positively affecting faecal N concentration (P≤0.001), while there was a negative correlation with the faecal concentration of NDF (P≤0.05) and the faecal ratios of NDF/N and C/N (P≤0.001). Particle passage through the mixing compartment was lower (P≤0.05) for HL (0.033 h-1) than for LL (0.043 h-1) animals, while values of 0.034 h-1 and 0.038 h-1 were obtained for groups LH and HH. At 55.4 h, total tract mean retention time was significantly (P≤0.05) lower in group LL that in all other groups where these values varied between 71 h (HH) and 79 h (HL); this was probably due to the high dietary N concentration of diet LL which was negatively correlated with time of first marker appearance in faeces (r= 0.84, P≤0.001), while the dietary C concentration was negatively correlated with particle passage through the mixing compartment (r= 0.57, P≤0.05). The results suggest that manure quality of river buffalo heifers can be considerably influenced by diet composition. Despite the reportedly high fibre digestion capacity of buffalo, digestive processes did not suppress the expression of diet characteristics in the faeces. This is important when aiming at producing a specific manure quality for fertilization purposes in (organic) crop cultivation. Although there was a strong correlation between the ingestion and the faecal excretion of nitrogen, the correlation between diet and faecal C/N ratio was weak. To impact on manure mineralization, the dietary NDF and N concentrations seem to be the key control points, but modulating effects are achieved by the inclusion of starch into the diet. Within the boundaries defined by the animals’ metabolic and (re)productive requirements for energy and nutrients, diet formulation may thus take into account the abiotically and biotically determined manure turnover processes in the soil and the nutrient requirements of the crops to which the manure is applied, so as to increase nutrient use efficiency along the continuum of the feed, the animal, the soil and the crop in (organic) farming systems.
Resumo:
Delayed peak response of plasma retinyl esters (RE) relative to plasma triacylglycerols (TAG) and apolipoprotein (Apo) B-48 responses following a fat load supplemented with vitamin A raised doubts about the use of vitamin A to label dietary-derived lipids and lipoproteins. The present study compared the use of water-miscible and oil-soluble retinyl palmitate (RP) as markers of dietary-derived lipoproteins in healthy subjects along with the measurements of postprandial plasma TAG and ApoB-48 responses to investigate whether the delayed peak response observed was due to delayed intestinal output of RE from oil-based solutions. Nine healthy female subjects were given a standard test meal containing a dose (112 mg) of RP in either water-miscible or oil-soluble form in random order, on two separate occasions after a 12 h overnight fast. The results showed that the mean plasma RE concentrations reached a peak significantly later than mean plasma TAG and ApoB-48 concentrations when oil-soluble RP was consumed, whereas plasma RE peaked earlier relative to plasma TAG and ApoB-48 responses when water-miscible RP was used. The results suggested a more rapid absorption with a significantly higher and earlier peak response of plasma RE when water-miscible RP was consumed. This was in contrast to the delayed initial appearance and later sustained higher concentrations of plasma RE during the late postprandial period when oil-soluble RP was consumed. The RE response to the water-miscible RP showed better concordance with plasma TAG response than that of oil-soluble RP.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In questo lavoro di tesi è stato sintetizzato un nuovo copolimero contenente il gruppo fullerenico in catena laterale. Il copolimero è risultato solubile nei comuni solventi organici e ha dato una efficienza di conversione fotovoltaica in un sistema BHJ del 2.19%.