741 resultados para polietileno glicol
Resumo:
The waste, exaggerated and incorrect disposal of biomass are common practices in modern times where everything is disposable. However the growing concern with the nature and the environment compel man to give nobler destinations for these products through sustainability and recycling of waste. Banana peel is a residual biomass, which is not consumed. It generates tons of waste per week in São Paulo city. This trash is disposed in dumps and landfills, which could be reduced by using it as reinforcement in natural composites. The high density polyethylene (HDPE) is a polymer derived from the ethylene polymerization and is easily recycled. Which makes it a sustainable material. In the present work characteristics of the natural composite composed with banana peel and high-density polyethylene were studied. It was noted that removing the lignin present in the banana peel, the fiber introduces a significant improvement in thermal resistance. The preparation of composite was made with a ratio of 5% and 10% of reinforcement in comparison with polymeric matrix mass. Composites were thermally, mechanically and microscopically characterized. The addition of fiber in the polymer increased the mechanical strength of the composite. The fiber surface treatment with distilled water removed the amorphous material present in the fibers, improving significantly thermal stability and increasing crystallinity of the celullose. The addition of 5% fiber in mass to the polymer increased significantly the tensile strength and elasticity modulus for the composite. With 10% of fiber addiction there were also an improvement when compared with pure HDPE, but when compared with 5% composite the mechanical properties are slightly lower. This may be due to the fiber particle size, which are small and eventually become a hub of tension ... (Complete abstract click electronic access below)
Resumo:
Pós-graduação em Ciência Odontólogica - FOA
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência Odontólogica - FOA
Resumo:
Pós-graduação em Ciência Odontólogica - FOA
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
Sealer 26® cement contains bisphenol epoxy resin associated with calcium hydroxide, presenting smaller radiopacity than other endodontic cements. Aiming to improve this property, iodoform has been added in its composition. However, this addition's possible changes in physical and chemical properties still need to be studied. OBJECTIVE: To evaluate the apical sealing ability, solubility, and pH of Sealer 26® alone or with iodoform, at several proportions. MATERIAL AND METHODS: Three experimental mixtures of Sealer 26®, alone or with iodoform, were prepared and subjected to solubility test. Additionally, these combinations were inserted into polyethylene tubes and immersed in distilled water, and, their pH was evaluated after 24-h and 7-day periods. Subsequently, forty roots of extracted lower incisors subdivided into four groups of 10 specimens each, were retrograde filled with one of the previously described mixtures and gutta-percha points. The roots were immersed in Rhodamine B, under vacuum, for 72 hours. After this period, the specimens were longitudinally sectioned, root fragments photographed, these images scanned, and apical infiltration measured by Image tool software. The obtained data were subjected to statistical analysis, at a significance level of 5%. RESULTS: Marginal leakage and solubility tests did not show any difference among the experimental groups (p > 0.05). pH analysis was only statistically different at 24-h period and between Sealer 26® alone and 1.1g iodoform group (p < 0.05). CONCLUSION: The presence of iodoform in Sealer 26®, at the used proportions, did not alter the solubility, apical marginal leakage and pH properties of the original cement.
Resumo:
This study aimed to develop, implement and evaluate the performance of a new type of bioreactor for anaerobic treatment of wastewater using different filling materials like trickling filters post-reactor. This bioreactor has mixed characteristics of the UASB reactors and horizontal flow from the point of view of removal of BOD (Biochemical Oxygen Demand) ssed (settled solids), TS (Total Solids), SS (Suspended Solid), SD (Dissolved Solids) and turbidity. The experimental model consists of a bioreactor with a volume of 12 m³, 2/3 filled by fluidized bed and 1/3 for fixed. The fluidized bed is made of polystyrene plates used as a system percolation and compartmentalized trickling filters, where each compartment was filled with a support medium with different characteristics (gravel number 4, plastic rings of polystyrene, PET and HDPE) . In addition, the output of a filter system was installed three entries filled with activated carbon. The bioreactor was installed in private residence in the city of Igarapava-SP (20° 02'40.18"S and 47° 45'01.36" W). The system was highly efficient as the removal of organic contaminant load 92% on average reducing the BOD, a significant result when compared to other anaerobic systems. For the other parameters, the mean reduction was 96% for turbidity, 99% ssed, 67.5% ST, 57% SD and 88% of SS. As for its operation the system was capable of operating in continuous flow without the need for maintenance during the entire period of evaluation and without energy, as it operates taking advantage of the natural slope of the terrain where it is installed. The environmental impacts were minimized due to the preservation of local vegetation allowing the ecosystem to remain unchanged beyond the prototype was completely sealed preventing exhalation of odors and therefore not causing inconvenience to neighboring populations. Given these facts it was concluded that the prototype is shown to be highly feasible deployed as a new alternative for treatment of sewage in rural and urban settings (individual homes, condos, farms, ranches, etc.) Due to ease of design and operability, and sustainability at all stages of execution.
Resumo:
This paper describes the in vivo Bronchoalveolar lavage (BAL)technique by endoscopy in tapirs (Tapirus terrestris) with clinicalsigns of tuberculosis. The technique was performed in two tapirs, male and female,from Curitiba Zoo, Paraná, Brazil. A flexible endoscope and a polyethylene catheterwere used after the chemical restraint of the animals. For BAL technique, 60mL ofsaline 0.9% were infused with a polyethylene catheter, introduced by the endoscope'working channel, and 15mL of BAL were recovered, analyzed and submitted tocytocentrifugation. Slides were stained by Papanicolaou, periodic acid-Schiff (PAS)and Ziehl-Neelsen methods contained high quantity of inflammatory cells on lightmicroscopy (macrophages 27.5%, lymphocytes 0.5%, neutrophis 67% and eosinophis 5%).BAL samples were submitted to culture, bacilloscopy and PCR and were negative forboth animals. Based on this study, it was concluded that the bronchoalveolar lavagetechnique in tapirs is feasible, simple, noninvasive, practical and fast, providingan important clinical information in vivo regarding the functionalstatus of the lower respiratory tract.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciência Odontólogica - FOA