915 resultados para polarization holographic optical recording
Resumo:
An interesting, periodic appearance of a new peak has been observed in the reflected spectrum of a Fiber Bragg Grating (FBG) inscribed in a germanosilicate fiber during thermal treatment. The new peak occurs on the longer wavelength side of the spectrum during heating and on the shorter wavelength side during cooling, following an identical reverse dynamics. Comparison with a commercial grating with 99.9% reflectivity shows a similar decay dynamics. It is proposed that the distortion due to simultaneous erasure and thermal expansion of the index modulation profile may be responsible for the observed anomaly. The reported results help us in understanding the thermal behavior of FBGs and provide additional insights into the mechanisms responsible for the photosensitivity in germanosilicate fibers.
Resumo:
We report the ferroelectric and pyroelectric properties of the composite films of lithium tantalate (LT) nanoparticle in poly(vinylidene fluoride) PVDF matrix at different volume fractions of LT (f(LT) = 0.047, 0.09 and 0.17). For an applied electric field of 150 kV cm(-1) the nonvolatile polarization of the composite was observed to increase from 0.014 mu C cm(-2) at f(LT) = 0 to 2.06 mu C cm(-2) at f(LT) = 0.17. For f(LT) = 0.17, the composite films exhibit a saturated ferroelectric hysteresis loop with a remanent polarization (2P(r) = 4.13 mu C cm(-2)). Compared with pure poled PVDF the composite films also showed a factor of about five enhancement in the pyroelectric coefficient at f(LT) = 0.17. When used in energy detection mode the pyroelectric voltage sensitivity of the composite films was found to increase from 3.93 to 18.5 VJ(-1) with an increase in f(LT) from 0.0 to 0.17.
Resumo:
In this paper, we study the Einstein relation for the diffusivity to mobility ratio (DMR) in n-channel inversion layers of non-linear optical materials on the basis of a newly formulated electron dispersion relation by considering their special properties within the frame work of k.p formalism. The results for the n-channel inversion layers of III-V, ternary and quaternary materials form a special case of our generalized analysis. The DMR for n-channel inversion layers of II-VI, IV-VI and stressed materials has been investigated by formulating the respective 2D electron dispersion laws. It has been found, taking n-channel inversion layers of CdGeAs2, Cd(3)AS(2), InAs, InSb, Hg1-xCdxTe, In1-xGaxAsyP1-y lattice matched to InP, CdS, PbTe, PbSnTe, Pb1-xSnxSe and stressed InSb as examples, that the DMR increases with the increasing surface electric field with different numerical values and the nature of the variations are totally band structure dependent. The well-known expression of the DMR for wide gap materials has been obtained as a special case under certain limiting conditions and this compatibility is an indirect test for our generalized formalism. Besides, an experimental method of determining the 2D DMR for n-channel inversion layers having arbitrary dispersion laws has been suggested.
Resumo:
Experiments in spintronics necessarily involve the detection of spin polarization. The sensitivity of this detection becomes an important factor to consider when extending the low temperature studies on semiconductor spintronic devices to room temperature, where the spin signal is weaker. In pump-probe experiments, which optically inject and detect spins, the sensitivity is often improved by using a photoelastic modulator (PEM) for lock-in detection. However, spurious signals can arise if diode lasers are used as optical sources in such experiments, along with a PEM. In this work, we eliminated the spurious electromagnetic coupling of the PEM onto the probe diode laser, by the double modulation technique. We also developed a test for spurious modulated interference in the pump-probe signal, due to the PEM. Besides, an order of magnitude enhancement in the sensitivity of detection of spin polarization by Kerr rotation, to 3x10(-8) rad was obtained by using the concept of Allan variance to optimally average the time series data over a period of 416 s. With these improvements, we are able to experimentally demonstrate at room temperature, photoinduced steady-state spin polarization in bulk GaAs. Thus, the advances reported here facilitate the use of diode lasers with a PEM for sensitive pump-probe experiments. They also constitute a step toward detection of spin-injection in Si at room temperature.
Resumo:
We explore the use of polarized e(+)/e(-) beams and/or the information on final state decay lepton polarizations in probing the interaction of the Higgs boson with a pair of vector bosons. A model independent analysis of the process e(+)e(-) -> f (f) over barH, where f is any light fermion, is carried out through the construction of observables having identical properties under the discrete symmetry transformations as different individual anomalous interactions. This allows us to probe an individual anomalous term independent of the others. We find that initial state beam polarization can significantly improve the sensitivity to CP-odd couplings of the Z boson with the Higgs boson (ZZH). Moreover, an ability to isolate events with a particular tau helicity, with even 40% efficiency, can improve sensitivities to certain ZZH couplings by as much as a factor of 3. In addition, the contamination from the ZZH vertex contributions present in the measurement of the trilinear Higgs-W (WWH) couplings can be reduced to a great extent by employing polarized beams. The effects of initial state radiation and beamstrahlung, which can be relevant for higher values of the beam energy are also included in the analysis.
Resumo:
A defect-selective photothermal imaging system for the diagnostics of optical coatings is demonstrated. The instrument has been optimized for pump and probe parameters, detector performance, and signal processing algorithm. The imager is capable of mapping purely optical or thermal defects efficiently in coatings of low damage threshold and low absorbance. Detailed mapping of minor inhomogeneities at low pump power has been achieved through the simultaneous action of a low-noise fiber optic photothermal beam defection sensor and a common-mode-rejection demodulation (CMRD) technique. The linearity and sensitivity of the sensor have been examined theoretically and experimentally, and the signal to noise ratio improvement factor is found to be about 110 compared to a conventional bicell photodiode. The scanner is so designed that mapping of static or shock sensitive samples is possible. In the case of a sample with absolute absorptance of 3.8 x 10(-4), a change in absorptance of about 0.005 x 10(-4) has been detected without ambiguity, ensuring a contrast parameter of 760. This is about 1085% improvement over the conventional approach containing a bicell photodiode, at the same pump power. The merits of the system have been demonstrated by mapping two intentionally created damage sites in a MgF2 coating on fused silica at different excitation powers. Amplitude and phase maps were recorded for thermally thin and thick cases, and the results are compared to demonstrate a case which, in conventional imaging, would lead to a deceptive conclusion regarding the type and location of the damage. Also, a residual damage profile created by long term irradiation with high pump power density has been depicted.
Resumo:
Amorphous carbon-sulfur (a-C:S) composite films were prepared by vapor phase pyrolysis technique. The structural changes in the a-C:S films were investigated by electron microscopy. A powder X-ray diffraction (XRD) study depicts the two-phase nature of a sulfur-incorporated a-C system. The optical bandgap energy shows a decreasing trend with an increase in the sulfur content and preparation temperature. This infers a sulfur incorporation and pyrolysis temperature induced reduction in structural disorder or increase in sp (2) or pi-sites. The presence of sulfur (S 2p) in the a-C:S sample is analyzed by the X-ray photoelectron spectroscopy (XPS). The sp (3)/sp (2) hybridization ratio is determined by using the XPS C 1s peak fitting, and the results confirm an increase in sp (2) hybrids with sulfur addition to a-C. The electrical resistivity variation in the films depends on both the sulfur concentration and the pyrolysis temperature.
Resumo:
An inexpensive and effective simple method for the preparation of nano-crystalline titanium oxide (anatase) thin films at room temperature on different transparent substrates is presented. This method is based on the use of peroxo-titanium complex, i.e. titanium isopropoxide as a single initiating organic precursor. Post-annealing treatment is necessary to convert the deposited amorphous film into titanium oxide (TiO2) crystalline (anatase) phase. These films have been characterized for X-ray diffraction (XRD) studies, atomic force microscopic (AFM) studies and optical measurements. The optical constants such as refractive index and extinction coefficient have been estimated by using envelope technique. Also, the energy gap values have been estimated using Tauc's formula for on glass and quartz substrates are found to be 3.35 eV and 3.39 eV, respectively.
Resumo:
Highly luminescent CdSe/CdS core-shell nanocrystals have been assembled on indium tin oxide (ITO) coated glass substrates using a wet synthesis route. The physical properties of the quantum dots (QD) have been investigated using X-ray diffraction, transmission electron microscopy and optical absorption spectroscopy techniques. These quantum dots showed a strong enhancement in the near band edge absorption. The in situ luminescence behavior has been interpreted in the light of the quantum confinement effect and induced strain in the core-shell structure.
Resumo:
The rectangular dielectric waveguide is the most commonly used structure in integrated optics, especially in semi-conductor diode lasers. Demands for new applications such as high-speed data backplanes in integrated electronics, waveguide filters, optical multiplexers and optical switches are driving technology toward better materials and processing techniques for planar waveguide structures. The infinite slab and circular waveguides that we know are not practical for use on a substrate because the slab waveguide has no lateral confinement and the circular fiber is not compatible with the planar processing technology being used to make planar structures. The rectangular waveguide is the natural structure. In this review, we have discussed several analytical methods for analyzing the mode structure of rectangular structures, beginning with a wave analysis based on the pioneering work of Marcatili. We study three basic techniques with examples to compare their performance levels. These are the analytical approach developed by Marcatili, the perturbation techniques, which improve on the analytical solutions and the effective index method with examples.
Resumo:
In a search for inorganic oxide materials showing second-order nonlinear optical (NLO) susceptibility, we investigated several berates, silicates, and a phosphate containing trans-connected MO6, octahedral chains or MO5 square pyramids, where, M = d(0): Ti(IV), Nb(V), or Ta(V), Our investigations identified two new NLO structures: batisite, Na2Ba(TiO)(2)Si4O12, containing trans-connected TiO5 octahedral chains, and fresnoite, Ba2TiOSi2O7, containing square-pyramidal TiO5. Investigation of two other materials containing square-pyramidal TiO5 viz,, Cs2TiOP2O7 and Na4Ti2Si8O22. 4H(2)O, revealed that isolated TiO5, square pyramids alone do not cause a second harmonic generation (SHG) response; rather, the orientation of TiO5 units to produce -Ti-O-Ti-O- chains with alternating long and short Ti-O distances in the fresnoite structure is most likely the origin of a strong SHG response in fresnoite,
Resumo:
In this paper we propose a circularly polarized (CP) microstrip antenna on a suspended substrate with a coplanar capacitive feed and a slot within the rectangular patch. The antenna has an axial ratio bandwidth (< 3 dB) of 7.1%. The proposed antenna exhibits a much higher impedance bandwidth of about 49% (S11 < -10 dB) and also yields return loss better than -15 dB in the useful range of circular polarization. Measured characteristics of the antenna are in good agreement with the simulated results. The radiation patterns indicate good cross polarization rejection and low back lobe radiations. The design proposed here can be scaled to any frequency of interest.
Resumo:
An inexpensive and effective simple method for the preparation of nano-crystalline titanium oxide (anatase) thin films at room temperature on different transparent substrates is presented. This method is based on the use of peroxo-titanium complex, i.e. titanium isopropoxide as a single initiating organic precursor. Post-annealing treatment is necessary to convert the deposited amorphous film into titanium oxide (TiO2) crystalline (anatase) phase. These films have been characterized for X-ray diffraction (XRD) studies, atomic force microscopic (AFM) studies and optical measurements. The optical constants such as refractive index and extinction coefficient have been estimated by using envelope technique. Also, the energy gap values have been estimated using Tauc's formula for on glass and quartz substrates are found to be 3.35 eV and 3.39 eV, respectively. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The binding of Ricinus communis (castor-bean) agglutinin 1 to saccharides was studied by equilibrium dialysis and fluorescence polarization by using the fluorescently labelled sugar 4-methylumbelliferyl beta-D-galactopyranoside. No appreciable change in ligand fluorescence of 4-methylumbelliferyl beta-D-galactopyranoside was considerably polarized on its binding to the lectin. The association constants obtained by Scatchard analysis of equilibrium-dialysis and fluorescence-polarization data do not differ much from each other, and at 25 degrees C, Ka = 2.4 (+/- 0.2) X 10(4)M-1. These values agree reasonably well with that reported in the literature for Ricinus agglutinin 1. The number of binding sites obtained by the different experimental procedures is 1.94 +/- 0.1 per molecule of 120 000 daltons and is equal to the reported value of 2. The consistency in the values of Ka and number of binding sites indicate the absence of additional subsites on Ricinus agglutinin 1 for its specific sugars. In addition, the excellent agreement between the binding parameters obtained by equilibrium dialysis and fluorescence polarization indicate the potential of ligand-fluorescence-polarization measurements in the investigation of lectin-sugar interactions.
Resumo:
With the extension of the work of the preceding paper, the relativistic front form for Maxwell's equations for electromagnetism is developed and shown to be particularly suited to the description of paraxial waves. The generators of the Poincaré group in a form applicable directly to the electric and magnetic field vectors are derived. It is shown that the effect of a thin lens on a paraxial electromagnetic wave is given by a six-dimensional transformation matrix, constructed out of certain special generators of the Poincaré group. The method of construction guarantees that the free propagation of such waves as well as their transmission through ideal optical systems can be described in terms of the metaplectic group, exactly as found for scalar waves by Bacry and Cadilhac. An alternative formulation in terms of a vector potential is also constructed. It is chosen in a gauge suggested by the front form and by the requirement that the lens transformation matrix act locally in space. Pencils of light with accompanying polarization are defined for statistical states in terms of the two-point correlation function of the vector potential. Their propagation and transmission through lenses are briefly considered in the paraxial limit. This paper extends Fourier optics and completes it by formulating it for the Maxwell field. We stress that the derivations depend explicitly on the "henochromatic" idealization as well as the identification of the ideal lens with a quadratic phase shift and are heuristic to this extent.